Search results for "Polarity"

showing 10 items of 196 documents

Non-essential role for cilia in coordinating precise alignment of lens fibres

2016

The primary cilium, a microtubule-based organelle found in most cells, is a centre for mechano-sensing fluid movement and cellular signalling, notably through the Hedgehog pathway. We recently found that each lens fibre cell has an apically situated primary cilium that is polarised to the side of the cell facing the anterior pole of the lens. The direction of polarity is similar in neighbouring cells so that in the global view, lens fibres exhibit planar cell polarity (PCP) along the equatorial-anterior polar axis. Ciliogenesis has been associated with the establishment of PCP, although the exact relationship between PCP and the role of cilia is still controversial. To test the hypothesis t…

0301 basic medicineEmbryologyBBSomeBiologyArticle03 medical and health sciences0302 clinical medicineIntraflagellar transportMicrotubuleCiliogenesisLens CrystallineAnimalsBasal bodyLens placodeCiliaCells CulturedMice KnockoutTumor Suppressor ProteinsCiliumCell PolarityEpithelial CellsAnatomyCell biologyCytoskeletal Proteins030104 developmental biologyFiber cellMicrotubule-Associated Proteins030217 neurology & neurosurgeryDevelopmental BiologyMechanisms of Development
researchProduct

An Intronic cis-Regulatory Element Is Crucial for the Alpha Tubulin Pl-Tuba1a Gene Activation in the Ciliary Band and Animal Pole Neurogenic Domains …

2017

In sea urchin development, structures derived from neurogenic territory control the swimming and feeding responses of the pluteus as well as the process of metamorphosis. We have previously isolated an alpha tubulin family member of Paracentrotus lividus (Pl-Tuba1a, formerly known as Pl-Talpha2) that is specifically expressed in the ciliary band and animal pole neurogenic domains of the sea urchin embryo. In order to identify cis-regulatory elements controlling its spatio-temporal expression, we conducted gene transfer experiments, transgene deletions and site specific mutagenesis. Thus, a genomic region of about 2.6 Kb of Pl-Tuba1a, containing four Interspecifically Conserved Regions (ICRs…

0301 basic medicineEmbryologyPolarity in embryogenesislcsh:MedicineGene ExpressionMedicine (all); Biochemistry Genetics and Molecular Biology (all); Agricultural and Biological Sciences (all)medicine.disease_causeBiochemistryTubulinGene expressionElectron MicroscopyTransgeneslcsh:SciencePromoter Regions GeneticSea urchinConserved SequenceSequence DeletionGeneticsRegulation of gene expressionMicroscopyMutationMultidisciplinaryMedicine (all)Gene Expression Regulation DevelopmentalGenomicsAnimal ModelsTATA BoxEnzymesEnhancer Elements GeneticExperimental Organism Systemsembryonic structuresParacentrotusTranscription Initiation SiteOxidoreductasesLuciferaseResearch ArticleEchinodermsTranscriptional ActivationImaging TechniquesNeurogenesisGreen Fluorescent ProteinsEmbryonic DevelopmentSettore BIO/11 - Biologia MolecolareBiologyResearch and Analysis MethodsGenome ComplexityParacentrotus lividus03 medical and health sciencesSpecies SpecificityTubulinsbiology.animalFluorescence ImagingGeneticsmedicineConsensus sequenceAnimalsCiliaEnhancerBiochemistry Genetics and Molecular Biology (all)Binding SitesModels Geneticlcsh:REmbryosOrganismsBiology and Life SciencesComputational BiologyProteinsbiology.organism_classificationInvertebratesIntronsCytoskeletal Proteins030104 developmental biologyAgricultural and Biological Sciences (all)Bright Field ImagingSea UrchinsEnzymologyMutagenesis Site-Directedlcsh:QTransmission Electron MicroscopyDevelopmental BiologyTranscription FactorsPLOS ONE
researchProduct

Visualizing the spatiotemporal map of Rac activation in bovine aortic endothelial cells under laminar and disturbed flows.

2017

Disturbed flow can eliminate the alignment of endothelial cells in the direction of laminar flow, and significantly impacts on atherosclerosis in collateral arteries near the bifurcation and high curvature regions. While shear stress induced Rac polarity has been shown to play crucial roles in cell polarity and migration, little is known about the spatiotemporal map of Rac under disturbed flow, and the mechanism of flow-induced cell polarity still needs to be elucidated. In this paper, disturbed flow or laminar flow with 15 dyn/cm2 of average shear stress was applied on bovine aortic endothelial cells (BAECs) for 30 minutes. A genetically-encoded PAK-PBD-GFP reporter was transfected into BA…

0301 basic medicineFluorescence-lifetime imaging microscopyCell Membraneslcsh:MedicineMicrotubulesCell membraneLaminar Flow0302 clinical medicineCell polarityFluorescence microscopeMembrane fluidityCytoskeletonlcsh:ScienceShear StressesCytoskeletonAortaMultidisciplinaryChemistryPhysicsClassical MechanicsCell Polarityrac GTP-Binding Proteinsmedicine.anatomical_structurePhysical SciencesMechanical StressCellular Structures and OrganellesResearch ArticleCell PhysiologyImaging TechniquesMembrane FluidityFluid MechanicsResearch and Analysis MethodsContinuum Mechanics03 medical and health sciencesFluorescence ImagingShear stressmedicineAnimalsFluid Flowlcsh:RBiology and Life SciencesFluid DynamicsLaminar flowCell Biology030104 developmental biologyBiophysicsCattlelcsh:QEndothelium Vascular030217 neurology & neurosurgeryPLoS ONE
researchProduct

Macrophage type modulates osteogenic differentiation of adipose tissue MSCs

2017

Since the reconstruction of large bone defects remains a challenge, knowledge about the biology of bone healing is desirable to develop novel strategies for improving the treatment of bone defects. In osteoimmunology, macrophages are the central component in the early stage of physiological response after bone injury and bone remodeling in the late stage. During this process, a switch of macrophage phenotype from pro-inflammatory (M1) to anti-inflammatory (M2) is observed. An appealing option for bone regeneration would be to exploit this regulatory role for the benefit of osteogenic differentiation of osteoprogenitor cells (e.g., mesenchymal stem cells; MSCs) and to eventually utilize this…

0301 basic medicineHistologyMacrophageOsteoimmunologyAdipose tissueBone healingCell CommunicationBiologyBone morphogenetic protein 2Bone remodelingCell LinePathology and Forensic MedicineMSC03 medical and health sciencesCalcification PhysiologicAll institutes and research themes of the Radboud University Medical CenterOsteogenesisOsteogenic differentiationHumansBone regenerationCell ProliferationBone InjuryMacrophagesMesenchymal stem cellCell PolarityCell DifferentiationMesenchymal Stem CellsRegular ArticleCell BiologyAlkaline PhosphataseCoculture TechniquesCell biology030104 developmental biologyReconstructive and regenerative medicine Radboud Institute for Molecular Life Sciences [Radboudumc 10]Adipose TissueGene Expression RegulationCell culture modelImmunologyCytokinesBiomarkersCell and Tissue Research
researchProduct

Electrospun poly(hydroxybutyrate) scaffolds promote engraftment of human skin equivalents via macrophage M2 polarization and angiogenesis.

2018

Human dermo-epidermal skin equivalents (DE) comprising in vitro expanded autologous keratinocytes and fibroblasts are a good option for massive burn treatment. However, the lengthy expansion time required to obtain sufficient surface to cover an extensive burn together with the challenging surgical procedure limits their clinical use. The integration of DE and biodegradable scaffolds has been proposed in an effort to enhance their mechanical properties. Here, it is shown that poly(hydroxybutyrate) electrospun scaffolds (PHB) present good biocompatibility both in vitro and in vivo and are superior to poly-epsilon-caprolactone electrospun scaffolds as a substrate for skin reconstruction. Impl…

0301 basic medicineKeratinocytesMaleBiocompatibilityAngiogenesisPolymersBiomedical EngineeringMedicine (miscellaneous)HydroxybutyratesNeovascularization PhysiologicHuman skinhuman skin xenograftBiocompatible Materials02 engineering and technologyNodMice SCIDpoly(hydroxybutyrate)Biomaterials03 medical and health sciencesIn vivoMice Inbred NODProhibitinsHuman Umbilical Vein Endothelial CellsAnimalsHumansRats WistarelectrospinningCell ProliferationSkin ArtificialTissue EngineeringTissue ScaffoldsChemistryMacrophagestechnology industry and agricultureCell PolarityCell DifferentiationM2 polarizationDermisSkin Transplantation021001 nanoscience & nanotechnologyM2 MacrophageIn vitro030104 developmental biologyskin equivalentsEpidermis0210 nano-technologyBiomedical engineeringJournal of tissue engineering and regenerative medicine
researchProduct

Plasma phospholipid transfer protein (PLTP) modulates adaptive immune functions through alternation of T helper cell polarization

2016

International audience; Objective: Plasma phospholipid transfer protein (PLTP) is a key determinant of lipoprotein metabolism, and both animal and human studies converge to indicate that PLTP promotes atherogenesis and its thromboembolic complications. Moreover, it has recently been reported that PLTP modulates inflammation and immune responses. Although earlier studies from our group demonstrated that PLTP can modify macrophage activation, the implication of PLTP in the modulation of T-cell-mediated immune responses has never been investigated and was therefore addressed in the present study. Approach and results: In the present study, we demonstrated that PLTP deficiency in mice has a pro…

0301 basic medicineLymphocyteIpid Transfer ProteinAdaptive ImmunityCardiovascular-DiseaseT-Lymphocytes RegulatoryLipoprotein MetabolismLeukocyte CountPhospholipid transfer proteinPolarizationImmunology and Allergy[ SDV.IMM ] Life Sciences [q-bio]/ImmunologyHypersensitivity DelayedPhospholipid Transfer ProteinsCell PolarityCell DifferentiationT-Lymphocytes Helper-InducerT helper cellFlow CytometryAcquired immune systemCell biologyInfectious Diseasesmedicine.anatomical_structureEndothelial-CellsCytokines[SDV.IMM]Life Sciences [q-bio]/ImmunologyLymphocytemedicine.symptomResearch ArticleDensity-Lipoprotein[SDV.IMM] Life Sciences [q-bio]/ImmunologyHuman Atherosclerotic PlaquesT cellCirculating Interleukin-18ImmunologyT CellAntigen-Presenting CellsInflammationAcute Myocardial-InfarctionGATA3 Transcription FactorBiology03 medical and health sciencesImmune systemmedicineAnimalsAntigen-presenting cellDeficient MiceAlpha-TocopherolMice Inbred C57BL030104 developmental biologyImmunologyVitamin-ET-Box Domain ProteinsBiomarkersSpleen
researchProduct

Tetraspanin CD63 controls basolateral sorting of organic cation transporter 2 in renal proximal tubules.

2016

CD63 is a ubiquitously expressed member of the tetraspanin superfamily. Using a mating-based split-ubiquitin-yeast 2-hybrid system, pull-down experiments, total internal reflection fluorescence microscopy, Forster resonance energy transfer, and biotinylation assays, we found that CD63 interacts with human organic cation transporter 2 (hOCT2), which transports endogenous and exogenous substrates, such as neurotransmitters and drugs in several epithelial cells. CD63 overexpression affects cellular localization of hOCT2 expressed in human embryonic kidney (HEK)293 cells. Studies with CD63-knockout mice indicate that in renal proximal tubules, CD63 determines the insertion of the mouse ortholog…

0301 basic medicineOrganic Cation Transport ProteinsEndosomeEndosomesBiochemistryMadin Darby Canine Kidney CellsKidney Tubules Proximal03 medical and health sciencesMiceDogsTetraspaninGeneticsAnimalsHumansMolecular BiologyCellular localizationEpithelial polarityChemistryTetraspanin 30rab4 GTP-Binding ProteinsHEK 293 cellsCell MembraneOrganic Cation Transporter 2TransporterEpithelial CellsTransfectionCell biologyMice Inbred C57BLProtein Transport030104 developmental biologyHEK293 CellsMembrane proteinBiotechnologyProtein BindingFASEB journal : official publication of the Federation of American Societies for Experimental Biology
researchProduct

Intercellular Connectivity and Multicellular Bioelectric Oscillations in Nonexcitable Cells: A Biophysical Model

2018

Bioelectricity is emerging as a crucial mechanism for signal transmission and processing from the single-cell level to multicellular domains. We explore theoretically the oscillatory dynamics that result from the coupling between the genetic and bioelectric descriptions of nonexcitable cells in multicellular ensembles, connecting the genetic prepatterns defined over the ensemble with the resulting spatio-temporal map of cell potentials. These prepatterns assume the existence of a small patch in the ensemble with locally low values of the genetic rate constants that produce a specific ion channel protein whose conductance promotes the cell-polarized state (inward-rectifying channel). In this…

0301 basic medicinePhysicsMembrane potentialGeneral Chemical EngineeringConductanceIon Channel ProteinContext (language use)DepolarizationGeneral ChemistryArticleQuantitative Biology::Cell BehaviorCoupling (electronics)lcsh:Chemistry03 medical and health sciencesMulticellular organism030104 developmental biology0302 clinical medicinelcsh:QD1-999Cell polarityBiophysics030217 neurology & neurosurgery
researchProduct

Cytoplasmic localization of the cell polarity factor scribble supports liver tumor formation and tumor cell invasiveness

2018

The loss of epithelial cell polarity plays an important role in the development and progression of liver cancer. However, the specific molecular mechanisms supporting tumor initiation and progression are poorly understood. In this study, transcriptome data and immunofluorescence stains of tissue samples derived from hepatocellular carcinoma (HCC) patients revealed that overexpression associated with cytoplasmic localization of the baso-lateral cell polarity complex protein Scribble (Scrib) correlated with poor prognosis of HCC patients. In comparison to HCC cells stably expressing wildtype Scrib (ScribWT), mutated Scrib with enforced cytoplasmic enrichment (ScribP305L) induced AKT signaling…

0301 basic medicineSCRIBCytoplasmCarcinoma HepatocellularTumor initiationBiologyMice03 medical and health sciences0302 clinical medicineCell Line TumorCell polarityPhosphoprotein PhosphatasesAnimalsHumansPTENTensinNeoplasm InvasivenessEpithelial–mesenchymal transitionProtein kinase BHepatologyOncogeneTumor Suppressor ProteinsLiver NeoplasmsCell PolarityMembrane ProteinsNuclear ProteinsMolecular biology3. Good healthCell Transformation Neoplastic030104 developmental biologyLiver030220 oncology & carcinogenesisbiology.proteinCancer researchProto-Oncogene Proteins c-aktSignal TransductionHepatology
researchProduct

Transport of Amino Acids Across the Blood-Brain Barrier.

2020

The blood-brain-barrier (BBB), present in brain capillaries, constitutes an essential barrier mechanism for normal functioning and development of the brain. The presence of tight junctions between adjacent endothelial cells restricts permeability and movement of molecules between extracellular fluid and plasma. The protein complexes that control cell-cell attachment also polarize cellular membrane, so that it can be divided into luminal (blood-facing) and abluminal (brain) sides, and each solute that enters/leaves the brain must cross both membranes. Several amino acid (AA) transport systems with different distributions on both sides of the BBB have been described. In a broad sense, there a…

0301 basic medicineluminal membranePhysiologyfacilitative transportReviewBlood–brain barrierlcsh:Physiology03 medical and health sciences0302 clinical medicinePhysiology (medical)abluminal membraneCell polaritymedicineactive transportlcsh:QP1-981Tight junctionamino acid transportChemistryTransporterblood-brain barrierendothelial cellsEndothelial stem cellcell polarity030104 developmental biologymedicine.anatomical_structureMembraneBiophysicsEfflux030217 neurology & neurosurgeryHomeostasisFrontiers in physiology
researchProduct