Search results for "Polycaprolactone"

showing 10 items of 45 documents

Nanoparticle formulations as recrystallization inhibitors in transdermal patches

2020

Abstract Drug crystallization in transdermal patches is still a major challenge, confronting the formulation development of topical drug delivery systems. Encapsulation of drugs into nanoparticles is proposed here as a promising tool for regulating drug crystallization in transdermal patches. The degree of recrystallization and transdermal permeation of ibuprofen and hydrocortisone loaded in polymeric and lipid nanoparticles from matrix-type transdermal patches were investigated. Ethyl cellulose (EC4), poly (lactide-co-glycolic acid) (PLGA) and polycaprolactone (PCL) were employed for polymeric nanoparticle preparations; while medium chain triglyceride (MCT) and witepsol were used for the p…

HydrocortisoneSwinePolyestersSkin AbsorptionTransdermal PatchPharmaceutical ScienceNanoparticleIbuprofen02 engineering and technology030226 pharmacology & pharmacy03 medical and health scienceschemistry.chemical_compound0302 clinical medicinePolylactic Acid-Polyglycolic Acid CopolymerEthyl celluloseSolid lipid nanoparticlemedicineAnimalsCelluloseTriglyceridesSkinTransdermalDrug CarriersChemistry021001 nanoscience & nanotechnologyIbuprofenDrug LiberationPLGAChemical engineeringPolycaprolactoneNanoparticlesNanocarriersCrystallization0210 nano-technologymedicine.drugInternational Journal of Pharmaceutics
researchProduct

Near-Infrared, Light-Triggered, On-Demand Antiinflammatories and Antibiotics Release by Graphene Oxide/Elecrospun PCL Patch for Wound Healing

2019

Very recently, significant attention has been focused on the adsorption and cell adhesion properties of graphene oxide (GO), because it is expected to allow high drug loading and controlled drug release, as well as the promotion of cell adhesion and proliferation. This is particularly interesting in the promotion of wound healing, where antibiotics and anti-inflammatories should be locally released for a prolonged time to allow fibroblast proliferation. Here, we designed an implantable patch consisting of poly(caprolactone) electrospun covered with GO, henceforth named GO&ndash

Ketoprofenvancomycinwound healing02 engineering and technology010402 general chemistry01 natural scienceslcsh:QD241-441chemistry.chemical_compoundlcsh:Organic chemistryIn vivopolycaprolactonemedicineFibroblastCell adhesionplasmaGeneral MedicineAdhesion021001 nanoscience & nanotechnologyon-demand drug release0104 chemical sciencesmedicine.anatomical_structurechemistryPolycaprolactoneBiophysicsgraphene oxide0210 nano-technologyWound healingCaprolactonemedicine.drug
researchProduct

Influence of polymer content in Ca-deficient hydroxyapatite–polycaprolactone nanocomposites on the formation of microvessel-like structures

2009

Calcium phosphate (CaP) ceramics are widely used in bone tissue engineering due to their good osteoconductivity. The mechanical properties of CaP can be modified by the addition of small volume fractions of biodegradable polymers such as polycaprolactone (PCL). Nevertheless, it is also important to evaluate how the polymer content influences cell-material or cell-cell interactions because of potential consequences for bone regeneration and vascularization. In this study we assessed the general biocompatibilty of Ca-deficient hydroxyapatite (CDHA)-PCL disks containing nominally 11 and 24% polycaprolactone using human umbilical vein endothelial cells and human primary osteoblasts. Confocal mi…

Materials scienceAngiogenesisPolyestersBiomedical EngineeringNeovascularization Physiologicchemistry.chemical_elementBiocompatible Materialsmacromolecular substancesCalciumBiochemistryUmbilical veinNanocompositeslaw.inventionBiomaterialschemistry.chemical_compoundConfocal microscopylawHumansBone regenerationMolecular BiologyMicrovesselCell ProliferationOsteoblastsReverse Transcriptase Polymerase Chain Reactiontechnology industry and agricultureEndothelial CellsGeneral MedicineAlkaline Phosphataseequipment and suppliesmusculoskeletal systemBiodegradable polymerCoculture TechniquesDurapatitechemistryMicrovesselsPolycaprolactoneCalciumBiomarkersBiotechnologyBiomedical engineeringActa Biomaterialia
researchProduct

Characterization and osteogenic activity of a silicatein/biosilica-coated chitosan-graft-polycaprolactone.

2014

Several attempts have been made in the past to fabricate hybrid materials that display the complementary properties of the polyester polycaprolactone (PCL) and the polysaccharide chitosan (CHS) for application in the field of bone regeneration and tissue engineering. However, such composites generally have no osteogenic activity per se. Here we report the synthesis of a chitosan-graft-polycaprolactone (CHS-g-PCL) and its subsequent characterization, including crystallinity, chemical structure and thermal stability. Upon surface-functionalization of CHS-g-PCL with osteogenic biosilica via the surface-immobilized enzyme silicatein, protein adsorption, surface morphology and wettability were a…

Materials scienceBone RegenerationPolyestersBiomedical Engineeringmacromolecular substancesBiochemistryBiomaterialsChitosanchemistry.chemical_compoundCrystallinityTissue engineeringCoated Materials BiocompatibleOsteogenesisCell Line TumorHumansComposite materialBone regenerationMolecular BiologyChitosanOsteoblastsintegumentary systemTissue Engineeringtechnology industry and agricultureGeneral Medicinemusculoskeletal systemequipment and suppliesAlkaline PhosphataseSilicon DioxidePolyesterchemistryChemical engineeringPolycaprolactoneHybrid materialBiotechnologyProtein adsorptionActa biomaterialia
researchProduct

Electrospun PCL/GO-g-PEG structures: Processing-morphology-properties relationships

2017

Abstract Polycaprolactone (PCL) biocomposite nanofiber scaffolds with different concentrations of graphene oxide (GO) and GO surface grafted with poly(ethylene glycol) (GO-g-PEG) were prepared by electrospinning. Morphological, mechanical as well as wettability characterizations of electrospun nanofibers were carried out. Results showed that the average diameter of PLA/GO electrospun nanofibers decreased upon increasing the filler content. Differently, the diameter increased while using GO-g-PEG. Both nanofillers enhanced the electrospun PCL hydrophilicity even if PCL/GO-g-PEG samples exhibited improved wettability. The Young moduli of the composite nanofiber mats were improved by adding GO…

Materials scienceComposite numbermacromolecular substances02 engineering and technology010402 general chemistry01 natural sciencesMultifunctional compositechemistry.chemical_compoundPEG ratioComposite materialtechnology industry and agriculturePEGylated graphene oxideequipment and supplies021001 nanoscience & nanotechnologyGraftingElectrospinning0104 chemical scienceschemistryMechanics of MaterialsNanofiberPolycaprolactoneCeramics and CompositesBiocomposite0210 nano-technologyBiocompositeMechanical propertieEthylene glycolComposites Part A: Applied Science and Manufacturing
researchProduct

Mechanical behavior of polylactic acid/polycaprolactone porous layered functional composites

2016

Abstract Biopolymeric porous devices exhibiting graded properties can play a crucial role in several fields, such as tissue engineering or controlled drugs release. In this context, the gradient of a specific property can be achieved by developing porous laminates composed by different types of materials. This work presents for the first time a multi-phasic porous laminate based on polycaprolactone (PCL) and polylactic acid (PLA) prepared by combining melt mixing, compression molding and particle leaching. All the materials were characterized from a morphological and a mechanical point of view. The results put into evidence the possibility to tune and to predict the mechanical properties by…

Materials scienceCompression moldingCompression moldingFunctionally graded materialCeramics and Composite02 engineering and technology010402 general chemistry01 natural sciencesControlled drugsIndustrial and Manufacturing Engineeringchemistry.chemical_compoundLayered structurePolylactic acidTissue engineeringAdhesion; Compression molding; Functionally graded materials; Layered structures; Mechanical properties; Ceramics and Composites; Mechanics of Materials; Industrial and Manufacturing Engineering; Mechanical EngineeringMechanics of MaterialComposite materialPorosityMelt mixingMechanical Engineering021001 nanoscience & nanotechnology0104 chemical scienceschemistryMechanics of MaterialsPolycaprolactoneCeramics and CompositesAdhesionLeaching (metallurgy)0210 nano-technologyMechanical propertie
researchProduct

Rapid One-Step Fabrication of Graphene Oxide-Decorated Polycaprolactone Three-Dimensional Templates for Water Treatment

2020

Coating of flexible substrates is crucial to prepare versatile, multifunctional materials. However, exploration of effective fabrication approaches is still a challenging issue, because the pathways generally proposed require time-consuming, multistep protocols. Here, we developed a one-pot process for decorating either pearl necklace-like or fibrous fluffy-like structures of polycaprolactone (PCL) with graphene oxide (GO) skin. PCL solutions were dry jet-wet electrosprayed or electrospun into a stirred liquid collector constituted by ethanol-containing GO nanoparticles. The stirred liquid collector enables the formation of 3D-structures, whose microarchitecture can be designed by controlli…

Materials scienceFabricationPolymers and PlasticsOxideNanotechnologyOne-Stepengineering.materialfiberslaw.inventionchemistry.chemical_compoundCoatinglawdry jet-wet-electrospinning3D electrospinningGrapheneProcess Chemistry and TechnologyOrganic Chemistrybeadsgraphene coatingSettore ING-IND/22 - Scienza E Tecnologia Dei MaterialiTemplatechemistryphenol removalhierarchical structurePolycaprolactoneengineeringWater treatment
researchProduct

Diene/polar monomer copolymers, compatibilisers for polar/non-polar polymer blends. A controlled block copolymerisation with a single-site component …

2002

A well-controlled two-step process, the polymerisation of isoprene or isoprene/hex-1-ene copolymerisation followed by e-caprolactone polymerisation, affords trans-polyisoprene or (trans-polyisoprene/hex-1-ene copolymer)–poly(e-caprolactone) diblocks of various lengths. The single component initiator is an allylsamarocene compound. An atomic force microscopy study shows that these copolymers are efficient compatibilisers for poly(e-caprolactone) and polyisoprene blends. Poly(e-caprolactone) chain growth from Sm–polyisoprene chain.

Materials sciencePolymers and PlasticsDieneOrganic ChemistryCompatibilizationCondensed Matter Physicschemistry.chemical_compoundMonomerchemistryPolymerizationPolycaprolactonePolymer chemistryMaterials ChemistryCopolymerPolymer blendPhysical and Theoretical ChemistryIsopreneMacromolecular Chemistry and Physics
researchProduct

Characterizations of Thermoplastic Block Elastomers Based on Polybutadiene and ε -Caprolactone

2010

A broad series of tri- and multiblock copolymers based on linear and branched oligomers of polybutadiene as central blocks and polycaprolactone (PCL) as block extremities are characterized by SEC, DSC, DMA, Dynamical Rheology and DRX. DSC analyses reveal phase separation between the two amorphous PB and PCL phases. By thermal analysis, the glass transition temperature of PCL is only detected for materials containing at least 80% w/w of PCL. This is attributed to the small length of the polyester blocks for copolymers containing less than 80% w/w of PCL. The increase of fusion heat with increasing PCL content in the copolymers is correlated to the greater ability of PCL chains to rearrange a…

Materials sciencePolymers and PlasticsEnthalpy of fusionGeneral ChemistryDynamic mechanical analysisElastomerchemistry.chemical_compoundPolybutadienechemistryPolycaprolactoneMaterials ChemistryCeramics and CompositesThermoplastic elastomerComposite materialGlass transitionCaprolactoneJournal of Macromolecular Science, Part A
researchProduct

Tunable release of Chlorhexidine from Polycaprolactone-based filaments containing graphene nanoplatelets

2019

Abstract Graphene nanoplatelets (GNP) as fillers and Chlorhexidine (CHX), as an antibacterial agent, were incorporated in a polycaprolactone (PCL) matrix and processed into filaments by melt spinning. The influence of both drawing and formulation on the processability, spinnability, mechanical properties and release behaviour of these materials were deeply investigated by performing rheological, morphological analysis, tensile tests, and by measuring the cumulative release of CHX in PBS at 37 °C. Furthermore, Korsmeyer–Peppas model was adopted to study the kinetics release mechanism. The results showed that adding GNP did not alter the processability and spinnability of the systems. Further…

Materials sciencePolymers and PlasticsGeneral Physics and Astronomy02 engineering and technology010402 general chemistry01 natural scienceslaw.inventionchemistry.chemical_compoundRheologylawUltimate tensile strengthMaterials ChemistryControlled releaseComposite materialAntibacterial agentNanocompositeNanocompositeGrapheneOrganic Chemistry021001 nanoscience & nanotechnologyControlled release0104 chemical sciencesMelt spinningSettore ING-IND/22 - Scienza E Tecnologia Dei MaterialichemistryPCLPolycaprolactoneMelt spinningGraphene0210 nano-technologyMechanical propertie
researchProduct