Search results for "Polycaprolactone"
showing 10 items of 45 documents
Polycaprolactone-based scaffold for oil-selective sorption and improvement of bacteria activity for bioremediation of polluted water
2017
Abstract A novel floatable and biodegradable sponge for the selective absorption of oil from water and potentially useful as cell carrier for bioremediation treatments was prepared in polycaprolactone (PCL). The eco-friendly process for fabricating the PCL sponge does not involve either synthetic routes or organic solvents, thus minimizing environmental hazard. In particular, the 3D porous materials have been prepared by mixing in the melt the polymer matrix with two water-soluble porogen agents (NaCl and PEG) and thereafter leaching the obtained PCL/NaCl/PEG composites in water. The PCL sponges here proposed are capable to remove different types of oily pollutants (up to 500 wt%), and were…
Synthesis and degradation of poly (2-hydroxyethyl methacrylate)-graft-poly (ε-caprolactone) copolymers
2004
Abstract Poly (e-caprolactone) macromonomers carrying a methacryloyl end groups were synthesized using different lanthanide derivatives as catalysts, and characterized by SEC and 1 H NMR. Hydrophilic–hydrophobic copolymers from macromonomers and 2-hydroxyethyl methacrylate (HEMA) were obtained by solution free radical polymerization. Depending on the feed ratio of the two components, different copolymer structures were obtained. The expected graft structure of the copolymers was confirmed by 1 H NMR. Thermal properties of the copolymers were determined by DSC and TGA. Hydrolytic and enzymatic degradations of the materials were performed. Poly (2-hydroxyethyl methacrylate)- graft -poly (e-ca…
Polycaprolactone/gelatin-based scaffolds with tailored performance: in vitro and in vivo validation
2019
Abstract Nanofibrous scaffolds composed of polycaprolactone (PCL) and gelatin (Ge) were obtained through a hydrolytic assisted electrospinning process. The PCL-to-Ge proportion (100/0 to 20/80), as well as the dissolution time (24, 48, 72, 96, 120 h) into a 1:1 formic/acetic acid solvent before electrospinning were modified to obtain the different samples. A strong influence of these factors on the physicochemical properties of the scaffolds was observed. Higher Ge percentage reduced crystallinity, allowed a uniform morphology and increased water contact angle. The increase in the dissolution time considerably reduced the molar mass and, subsequently, fibre diameter and crystallinity were a…
Mechanism of nanocapsules formation by the emulsion-diffusion process.
2007
International audience; A detailed investigation into the mechanisms of nanocapsule formation by means of the two stages “emulsion–diffusion” process is reported. Such widely used process is still poorly understood. An emulsion of oil, polymer and ethyl acetate is fabricated as a first step; dilution with pure water allows ethyl acetate to diffuse out from the droplets, leaving a suspension of nanocapsules at the end. It has been shown that the size of nanocapsules was related to the chemical composition of the organic phase and the size of primary emulsion through a simple geometrical relationship. As a consequence, most of the properties of the nanocapsules were decided at the emulsificat…
Non-hindered ansasamarocenes, versatile catalysts for diene/olefin/polar monomer copolymerisations. What is really the active species?
2002
Abstract Catalytic systems containing an ansabiscyclopentadienyllanthanide core and lithium and/or magnesium salts are obtained by reaction of the chloride precursors with allyllithium. These allyl complexes lead to the same active species which polymerises 1,3-dienes, copolymerises 1,3-dienes and α-olefin or α,ω-dienes or allows the controlled diblock polyisoprene/polycaprolactone copolymerisation. The exact nature of this active species and of the allyl precursors is investigated here.
Effect of Streptomyces coelicolor M145 cell immobilization on actinorhodin production
2016
Non previsto
Preparation and characterization of PCL/GO-g-PEG biocomposite nanofiber scaffolds
2016
Biocomposite nanofiber scaffolds of polycaprolactone (PCL) with different graphene oxide surface grafted with poly(ethylene glycol) (GO-g-PEG) concentrations were prepared by electrospinning. Morphological, mechanical as well as wettability characterization were carried out. Results showed that the average diameter of PLA/GO-g-PEG electrospun nanofibers increased by increasing the filler content. GO-g-PEG enhanced the electrospun PCL hydrophilicity as well as the Young modulus, in particular at low GO-g-PEG concentrations.
Electrospun PHEA-PLA/PCL Scaffold for Vascular Regeneration: A Preliminary in Vivo Evaluation
2017
Abstract Background There is increasing interest in the development of vessel substitutes, and many studies are currently focusing on the development of biodegradable scaffolds capable of fostering vascular regeneration. We tested a new biocompatible and biodegradable material with mechanical properties similar to those of blood vessels. Methods The material used comprises a mixture of α,β-poly(N-2-hydroxyethyl)- d,l -aspartamide (PHEA) and polylactic acid (PLA), combined with polycaprolactone (PCL) by means of electrospinning technique. Low-molecular-weight heparin was also linked to the copolymer. A tubular PHEA-PLA/PCL sample was used to create an arteriovenous fistula in a pig model wit…
Covalent RGD modification of the inner pore surface of polycaprolactone scaffolds
2011
Scaffold production for tissue engineering was demonstrated by means of a hot compression molding technique and subsequent particulate leaching. The utilization of spherical salt particles as the pore-forming agent ensured complete interconnectivity of the porous structure. This method obviated the use of potentially toxic organic solvents. To overcome the inherent non-cell-adhesive properties of the hydrophobic polymer polycaprolactone (PCL) surface activation with a diamine was performed, followed by the covalent immobilization of the adhesion-promoting RGD-peptide. The wet-chemical approach was performed to guarantee modification throughout the entire scaffold structure. The treatment wa…
Integration of PCL and PLA in a monolithic porous scaffold for interface tissue engineering.
2016
A novel bi-layered multiphasic scaffold (BLS) have been fabricated for the first time by combining melt mixing, compression molding and particulate leaching. One layer has been composed by polylactic acid (PLA) presenting pore size in the range of 90-110µm while the other layer has been made of polycaprolactone (PCL) with pores ranging from 5 to 40µm. The different chemo-physical properties of the two biopolymers combined with the tunable pore architecture permitted to realize monolithic functionally graded scaffolds engineered to be potentially used for interface tissues regenerations. BLS have been characterized from a morphological and a mechanical point of view. In particular, mechanica…