Search results for "Polyester"

showing 10 items of 221 documents

The solidification behavior of a PBT/PET blend over a wide range of cooling rate

2009

In recent years, much attention has been paid to the development of high-performance polyester blends, among which blends of polybutylene terephtha- late/polyethylene terephthalate (PBT/PET) are expected to exhibit remarkable prop- erties as far as their crystallization behavior is concerned. Through trial and error, appropriate commercial compositions have been chosen which could not be otherwise explained by a suitable interpretation of the mechanisms determining their solidifica- tion behavior. The solidification behavior of a 60/40 w/w PBT/PET blend was studied in a wide range of cooling conditions, according to a continuous cooling transforma- tion (CCT) procedure developed previously,…

Settore ING-IND/24 - Principi Di Ingegneria ChimicaPETSettore ING-IND/22 - Scienza E Tecnologia Dei Materialicrystallization[CHIM]Chemical Sciencespolyestersolidification[PHYS.COND]Physics [physics]/Condensed Matter [cond-mat]blendPBTComputingMilieux_MISCELLANEOUSpolymer solidification
researchProduct

Physical and biological properties of electrospun poly(d,l‐lactide)/nanoclay and poly(d,l‐lactide)/nanosilica nanofibrous scaffold for bone tissue en…

2021

Abstract Electrospun scaffolds exhibiting high physical performances with the ability to support cell attachment and proliferation are attracting more and more scientific interest for tissue engineering applications. The inclusion of inorganic nanoparticles such as nanosilica and nanoclay into electrospun biopolymeric matrices can meet these challenging requirements. The silica and clay incorporation into polymeric nanofibers has been reported to enhance and improve the mechanical properties as well as the osteogenic properties of the scaffolds. In this work, for the first time, the physical and biological properties of polylactic acid (PLA) electrospun mats filled with different concentrat…

Settore ING-IND/24 - Principi Di Ingegneria ChimicaTissue EngineeringTissue ScaffoldsPolyesterstechnology industry and agricultureNanofibersSettore ING-IND/34 - Bioingegneria Industrialenanosilicapre‐osteoblastic cellsBone and BonesCell LineNanocompositesnanoclayMiceSettore ING-IND/22 - Scienza E Tecnologia Dei MaterialiOsteogenesispre-osteoblastic cellsAnimalspolylactic acidResearch ArticleselectrospinningResearch ArticleJournal of Biomedical Materials Research. Part a
researchProduct

Green and Integrated Wearable Electrochemical Sensor for Chloride Detection in Sweat

2022

Wearable sensors for sweat biomarkers can provide facile analyte capability and monitoring for several diseases. In this work, a green wearable sensor for sweat absorption and chloride sensing is presented. In order to produce a sustainable device, polylactic acid (PLA) was used for both the substrate and the sweat absorption pad fabrication. The sensor material for chloride detection consisted of silver-based reference, working, and counter electrodes obtained from upcycled compact discs. The PLA substrates were prepared by thermal bonding of PLA sheets obtained via a flat die extruder, prototyped in single functional layers via CO2 laser cutting, and bonded via hot-press. The effect of co…

SilverPolyestersSettore ING-IND/34 - Bioingegneria IndustrialeBiosensing TechniquesElectrochemical TechniquesBiochemistryAtomic and Molecular Physics and OpticsAnalytical ChemistryWearable Electronic DevicesSettore ING-IND/23 - Chimica Fisica ApplicataSettore ING-IND/22 - Scienza E Tecnologia Dei MaterialiChloridesSettore ING-IND/17 - Impianti Industriali MeccaniciHumansElectrical and Electronic Engineeringelectrochemical sensors; wearable sensor; chloride detection; electrolyte assisted electrospinning; environmental-friendly; laser cuttingSweatchloride detection electrochemical sensors electrolyte assisted electrospinning environmental-friendly laser cutting wearable sensor Humans Sweat Chlorides Silver Polyesters Electrochemical Techniques Wearable Electronic Devices Biosensing TechniquesInstrumentation
researchProduct

Influence of substrate and temperature on the biodegradation of polyester-based materials: Polylactide and poly(3-hydroxybutyrate-co-3-hydroxyhexanoa…

2020

[EN] The extended use of polymers from renewable resources such as aliphatic polyesters or polyhydroxyalkanoates boosted the necessity to understand their behaviour in an end-of-life scenario. Although they can be degraded in reasonable shorter times than traditional polymers, understanding the degradation mechanisms under dissimilar conditions will contribute to further developments in this field. This work aimed to study the effect of temperature and substrate in the degradation of polylactide (PLA) and poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBH) in a simulated laboratory scale to ascertain their contribution, separately or in combination. For this purpose, nine parallel degradat…

Solucions polimèriquesMaterials sciencePolymers and PlasticsPoly-3-hydroxybutyratePolyester02 engineering and technology010402 general chemistry01 natural sciences15.- Proteger restaurar y promover la utilización sostenible de los ecosistemas terrestres gestionar de manera sostenible los bosques combatir la desertificación y detener y revertir la degradación de la tierra y frenar la pérdida de diversidad biológicaCIENCIA DE LOS MATERIALES E INGENIERIA METALURGICAMaterials Chemistry03.- Garantizar una vida saludable y promover el bienestar para todos y todas en todas las edades13.- Tomar medidas urgentes para combatir el cambio climático y sus efectosMaterials3-Hydroxyhexanoate11.- Conseguir que las ciudades y los asentamientos humanos sean inclusivos seguros resilientes y sosteniblesSubstrate (chemistry)Biodegradation021001 nanoscience & nanotechnologyCondensed Matter PhysicsBiomaterial0104 chemical sciences02.- Poner fin al hambre conseguir la seguridad alimentaria y una mejor nutrición y promover la agricultura sosteniblePolyesterPHBHChemical engineeringMechanics of MaterialsThermal degradationMAQUINAS Y MOTORES TERMICOSBiodegradationPLAChristian ministry0210 nano-technologySubstrateMATEMATICA APLICADA
researchProduct

Polyester vascular prostheses coated with a cyclodextrin polymer and activated with antibiotics: Cytotoxicity and microbiological evaluation

2008

Abstract Polyester (PET) vascular grafts are used to replace or bypass damaged arteries. To minimize the risk of infection during and after surgical interventions, a PET vascular prosthesis (Polythese®) was functionalized with cyclodextrin polymers (PolyCDs) in order to obtain the controlled release of antibiotics (ABs: ciprofloxacin, vancomcyin and rifampicin). An epithelial cell line (L132) was used to determine the viability of the antibiotics, and human pulmonary microvascular endothelial cells (HPMEC) were used for cell proliferation by cell counting and cell vitality with Alamar Blue fluorescent dye. Staphylococcus aureus, Escherichia coli and Enteroccocus sp. were used to determine t…

Staphylococcus aureusMaterials scienceCell Survivalmedicine.drug_classPolyestersAntibioticsBiomedical EngineeringMicrobial Sensitivity TestsProsthesis DesignBiochemistryMicrobiologyBiomaterialsMinimum inhibitory concentrationCiprofloxacinVancomycinIn vivoEscherichia colimedicineHumansCelluloseCytotoxicityMolecular BiologyCyclodextrinsGeneral MedicineAntimicrobialAnti-Bacterial AgentsBlood Vessel ProsthesisCiprofloxacinSpectrophotometryToxicityVancomycinRifampinEnterococcusBiotechnologymedicine.drugActa Biomaterialia
researchProduct

Azobenzene Polyesters Used as Gate-Like Scaffolds in Nanoscopic Hybrid Systems

2012

The synthesis and characterisation of new capped silica mesoporous nanoparticles for on-command delivery applications is reported. Functional capped hybrid systems consist of MCM-41 nanoparticles functionalised on the external surface with polyesters bearing azobenzene derivatives and rhodamine¿B inside the mesopores. Two solid materials, Rh-PAzo8-S and Rh-PAzo6-S, containing two closely related polymers, PAzo8 and PAzo6, in the pore outlets have been prepared. Materials Rh-PAzo8-S and Rh-PAzo6-S showed an almost zero release in water due to steric hindrance imposed by the presence of anchored bulky polyesters, whereas a large delivery of the cargo was observed in the presence of an esteras…

TECNOLOGIA DE ALIMENTOSazo compoundsPolyestersenzymesNanoparticlemesoporous materialspolyestersCatalysischemistry.chemical_compoundDrug Delivery SystemsQUIMICA ORGANICAPolymer chemistryHumanschemistry.chemical_classificationOrganic ChemistryQUIMICA INORGANICAGeneral ChemistryPolymerMesoporous silicaHydrogen-Ion ConcentrationSilicon DioxideControlled releaseMesoporous materialsEnzymesPolyesterAzobenzenechemistryChemical engineeringDrug deliveryDrug deliverydrug deliveryNanoparticlesCamptothecinMesoporous materialAzo CompoundsPorosityHeLa Cells
researchProduct

Strukturuntersuchung von Polyestern durch direkten Abbau im massenspektrometer, 5. Polyester aus Terephthalsäure und/oder Bernsteinsäure und Hydrochi…

1978

The structure and thermal degradation behaviour of polyesters from terephthalic and/or succinic acid and hydroquinone were investigated by pyrolysis mass spectrometry. Poly(oxysuccinyloxy-1,4-phenylene) (2) undergoes cleavage of the ester bond (Eq. (vii)) as a very selective pyrolysis mechanism at 310°C, whereas the thermally more stable poly(oxyterephthaloyloxy-1,4-phenylene) (1) starts to degrade above 400°C and yields pyrolysis products with phenyl (Eq. (iv)), p-hydroxyphenyl (Eq. (iii)), benzoyl (Eq. (iiv)) and carboxylic end groups. A calibration curve of the intensities of monomer specific fragments, obtained from pyrolysis mass spectra of polyesters from terephthalic acid, succinic a…

Terephthalic acidPolyesterchemistry.chemical_compoundMonomerchemistryHydroquinoneSuccinic acidPolymer chemistryMass spectrumPyrolysis mass spectrometryPyrolysisDie Makromolekulare Chemie
researchProduct

Zinc oxide application in the textile industry: surface tailoring and water barrier attributes as parameters with direct implication in comfort perfo…

2013

The present study focuses on surface tailoring and water barrier attributes of zinc oxide (ZnO)-polyester composite textile materials. The surface properties, such as surface topography and roughness, composite compositions as well as thermal stability of ZnO-100% polyester textile composite materials treated through a padding process with different concentrations of ZnO dispersions as active agent in water and methanol were studied. The results show that 3% ZnO-textile composite material have enhanced water barrier properties compared with the other compositions; a fact which promises improved properties in terms of comfort. ZnO modification of polyester surfaces leads to a dramatic decre…

TextileMaterials sciencePolymers and Plasticsbusiness.industryComposite numberchemistry.chemical_elementSurface finishZincPaddingPolyesterchemistryChemical Engineering (miscellaneous)Thermal stabilityWettingComposite materialbusinessTextile Research Journal
researchProduct

Effect of the applied organic load rate on biodegradable polymer production by mixed microbial cultures in a Sequencing Batch Reactor

2006

This article studies the operation of a new process for the production of biopolymers (polyhydroxyalkanoates, PHAs) at different applied organic load rates (OLRs). The process is based on the aerobic enrichment of activated sludge to obtain mixed cultures able to store PHAs at high rates and yields. A mixture of acetic, lactic, and propionic acids at different concentrations (in the range 8.5-31.25 gCOD/L) was fed every 2 h in a sequencing batch reactor (SBR). The resulting applied OLR was in the range 8.5-31.25 gCOD/L/day. Even though, as expected, the increase in the OLR caused an increase in biomass concentration (up to about 8.7 g COD/L), it also caused a relevant decrease of maximal po…

ThaueraPolyestersSEQUENCING BATCH REACTORPROCESS CONTROLPOLYHYDROXYALKANOATESBioengineeringSequencing batch reactorMICROBIAL STORAGE POLYMERSSEQUENCING BATCH REACTOR; POLYHYDROXYALKANOATES; MICROBIAL STORAGE POLYMERS; MICROBIAL CENOSIS CHARACTERISATION; FAMINE CONDITIONS; PROCESS CONTROLApplied Microbiology and BiotechnologyWaste Disposal FluidPolyhydroxyalkanoatesWater PurificationBiopolymersBioreactorsBioreactorFood scienceBiomassFAMINE CONDITIONSComamonasbiologyBacteriaMICROBIAL CENOSIS CHARACTERISATIONbusiness.industryChemistryBiodegradationbiology.organism_classificationBiotechnologyActivated sludgeAcids AcyclicAlcaligenesbusinessBiotechnology
researchProduct

Thermal and X-ray powder diffraction studies of aliphatic polyester dendrimers

2004

The syntheses and thermal and X-ray powder diffraction analyses of three sets of aliphatic polyester dendrimers based on 2,2-bis(hydroxymethyl)propionic acid as a repeating unit and 2,2-dimethyl-1,3-propanediol, 1,5-pentanediol, and 1,1,1-tris(hydroxymethyl)ethane as core molecules are reported. These dendritic polyesters were prepared in high yields with the divergent method. The thermal properties of these biodendrimers were evaluated with thermogravimetric analysis and differential scanning calorimetry. The thermal decomposition of the compounds occurred around 250 °C for the hydroxyl-ended dendrimers and around 150 °C for the acetonide-protected dendrimers. In addition, the crystallinit…

Thermogravimetric analysisDendrimersPolymers and PlasticsChemistryThermogravimetric analysis (TGA)2-bis(hydroxymethyl)propionic acid (bis-MPA)Organic ChemistryThermal decomposition2Differential scanning calorimetry (DSC)PolyesterCrystallinitychemistry.chemical_compoundDifferential scanning calorimetryDendrimerPolymer chemistryMaterials Chemistry22-bis(hydroxymethyl)propionic acid (bis-MPA)Physical chemistryAliphatic polyestersHydroxymethylPowder diffraction
researchProduct