Search results for "Polyesters"

showing 10 items of 117 documents

Azobenzene Polyesters Used as Gate-Like Scaffolds in Nanoscopic Hybrid Systems

2012

The synthesis and characterisation of new capped silica mesoporous nanoparticles for on-command delivery applications is reported. Functional capped hybrid systems consist of MCM-41 nanoparticles functionalised on the external surface with polyesters bearing azobenzene derivatives and rhodamine¿B inside the mesopores. Two solid materials, Rh-PAzo8-S and Rh-PAzo6-S, containing two closely related polymers, PAzo8 and PAzo6, in the pore outlets have been prepared. Materials Rh-PAzo8-S and Rh-PAzo6-S showed an almost zero release in water due to steric hindrance imposed by the presence of anchored bulky polyesters, whereas a large delivery of the cargo was observed in the presence of an esteras…

TECNOLOGIA DE ALIMENTOSazo compoundsPolyestersenzymesNanoparticlemesoporous materialspolyestersCatalysischemistry.chemical_compoundDrug Delivery SystemsQUIMICA ORGANICAPolymer chemistryHumanschemistry.chemical_classificationOrganic ChemistryQUIMICA INORGANICAGeneral ChemistryPolymerMesoporous silicaHydrogen-Ion ConcentrationSilicon DioxideControlled releaseMesoporous materialsEnzymesPolyesterAzobenzenechemistryChemical engineeringDrug deliveryDrug deliverydrug deliveryNanoparticlesCamptothecinMesoporous materialAzo CompoundsPorosityHeLa Cells
researchProduct

Effect of the applied organic load rate on biodegradable polymer production by mixed microbial cultures in a Sequencing Batch Reactor

2006

This article studies the operation of a new process for the production of biopolymers (polyhydroxyalkanoates, PHAs) at different applied organic load rates (OLRs). The process is based on the aerobic enrichment of activated sludge to obtain mixed cultures able to store PHAs at high rates and yields. A mixture of acetic, lactic, and propionic acids at different concentrations (in the range 8.5-31.25 gCOD/L) was fed every 2 h in a sequencing batch reactor (SBR). The resulting applied OLR was in the range 8.5-31.25 gCOD/L/day. Even though, as expected, the increase in the OLR caused an increase in biomass concentration (up to about 8.7 g COD/L), it also caused a relevant decrease of maximal po…

ThaueraPolyestersSEQUENCING BATCH REACTORPROCESS CONTROLPOLYHYDROXYALKANOATESBioengineeringSequencing batch reactorMICROBIAL STORAGE POLYMERSSEQUENCING BATCH REACTOR; POLYHYDROXYALKANOATES; MICROBIAL STORAGE POLYMERS; MICROBIAL CENOSIS CHARACTERISATION; FAMINE CONDITIONS; PROCESS CONTROLApplied Microbiology and BiotechnologyWaste Disposal FluidPolyhydroxyalkanoatesWater PurificationBiopolymersBioreactorsBioreactorFood scienceBiomassFAMINE CONDITIONSComamonasbiologyBacteriaMICROBIAL CENOSIS CHARACTERISATIONbusiness.industryChemistryBiodegradationbiology.organism_classificationBiotechnologyActivated sludgeAcids AcyclicAlcaligenesbusinessBiotechnology
researchProduct

Thermal and X-ray powder diffraction studies of aliphatic polyester dendrimers

2004

The syntheses and thermal and X-ray powder diffraction analyses of three sets of aliphatic polyester dendrimers based on 2,2-bis(hydroxymethyl)propionic acid as a repeating unit and 2,2-dimethyl-1,3-propanediol, 1,5-pentanediol, and 1,1,1-tris(hydroxymethyl)ethane as core molecules are reported. These dendritic polyesters were prepared in high yields with the divergent method. The thermal properties of these biodendrimers were evaluated with thermogravimetric analysis and differential scanning calorimetry. The thermal decomposition of the compounds occurred around 250 °C for the hydroxyl-ended dendrimers and around 150 °C for the acetonide-protected dendrimers. In addition, the crystallinit…

Thermogravimetric analysisDendrimersPolymers and PlasticsChemistryThermogravimetric analysis (TGA)2-bis(hydroxymethyl)propionic acid (bis-MPA)Organic ChemistryThermal decomposition2Differential scanning calorimetry (DSC)PolyesterCrystallinitychemistry.chemical_compoundDifferential scanning calorimetryDendrimerPolymer chemistryMaterials Chemistry22-bis(hydroxymethyl)propionic acid (bis-MPA)Physical chemistryAliphatic polyestersHydroxymethylPowder diffraction
researchProduct

Reprocessed polylactide: Studies of thermo-oxidative decomposition

2012

The combustion process of virgin and reprocessed polylactide (PLA) was simulated by multi-rate linear non-isothermal thermogravimetric experiments under O2. A complete methodology that accounted on the thermal stability and emission of gases was thoroughly developed. A new model, Thermal Decomposition Behavior, and novel parameters, the Zero-Decomposition Temperatures, were used to test the thermal stability of the materials under any linear heating rate. The release of gases was monitored by Evolved Gas Analysis with in-line FT-IR analysis. In addition, a kinetic analysis methodology that accounted for variable activation parameters showed that the decomposition process could be driven by …

Thermogravimetric analysisEnvironmental EngineeringMaterials scienceHot TemperatureEvolved gas analysisPolyestersKinetic analysisBioengineeringCombustionEvolved-Gas Analysis (EGA)Forensic engineeringThermal stabilityComputer SimulationRecyclingWaste Management and DisposalThermo-oxidative decomposition kineticsRenewable Energy Sustainability and the EnvironmentChemical process of decompositionThermal decompositionTermoplàsticsEnergetic valorizationGeneral MedicineThermal stabilityCiència dels materialsDecompositionChemical engineeringModels ChemicalPolylactide (PLA)MAQUINAS Y MOTORES TERMICOSOxidation-Reduction
researchProduct

Preparation, characterization and in vitro test of composites poly-lactic acid/hydroxyapatite scaffolds for bone tissue engineering.

2018

Abstract In this work, the possibility to produce composite Poly-L-lactic acid (PLLA)/Hydroxyapatite (HA) porous scaffolds via Thermally Induced Phase Separation (TIPS) for bone tissue engineering applications was investigated. Several PLLA/HA wt/wt ratios (95/5, 90/10, 70/30, 50/50, 34/66) were tested and the as-obtained scaffolds were characterized via Scanning Electron Microscopy, Wide Angle X-Ray Diffraction, Thermogravimetric analysis, Gas Pycnometry, Differential Scanning Calorimetry and mechanical compression test. Morphological analysis revealed an open structure with interconnected pores and HA particles embedded in the polymer matrix. Finally, cell cultures were carried out into t…

Thermogravimetric analysisMaterials scienceScanning electron microscopeCell SurvivalPolyestersComposite numberPolyesterBiocompatible Materials02 engineering and technologyMatrix (biology)010402 general chemistry01 natural sciencesBiochemistryBone and BonesHydroxyapatiteCell LineScaffoldMiceDifferential scanning calorimetryTissue ScaffoldTissue engineeringStructural BiologyMaterials TestingAnimalsMolecular BiologyMechanical PhenomenaBiocompatible Materialchemistry.chemical_classificationOsteoblastsCalorimetry Differential ScanningTissue EngineeringTissue ScaffoldsAnimalOsteoblastBiomarkerGeneral MedicinePolymer021001 nanoscience & nanotechnology0104 chemical sciencesPolyesterDurapatiteChemical engineeringchemistryThermogravimetry0210 nano-technologyPorosityBiomarkersBone and BoneInternational journal of biological macromolecules
researchProduct

Combining in the melt physical and biological properties of poly(caprolactone) and chlorhexidine to obtain antimicrobial surgical monofilaments.

2012

Bacterial infections on a sutured wound represent a critical problem, and the preparation of suture threads possessing antimicrobial properties is valuable. In this work, poly(caprolactone) (PCL) monofilaments were compounded at the concentration of 1, 2 and 4 % (w/w), respectively, to the antiseptic chlorhexidine diacetate (CHX). The incorporation was carried out in the melt by a single-step methodology, i.e. “online” approach. Mechanical tests revealed that the incorporation of CHX does not significantly change tensile properties of PCL fibres as the thermal profile adopted to prepare the compounded fibres does not compromise the antibacterial activity of CHX. In fact, CHX confers to comp…

Thermoplasticmedicine.drug_classCell SurvivalPolyestersSettore BIO/19 - Microbiologia GeneraleApplied Microbiology and Biotechnologychemistry.chemical_compoundAntisepticTensile StrengthPolymer chemistryUltimate tensile strengthmedicineEscherichia coliHumanschemistry.chemical_classificationpoly(caprolactone)biologyChemistryChlorhexidinechlorhexidineChlorhexidineSuture TechniquesSpectrometry X-Ray EmissionGeneral MedicineFibroblastsbiology.organism_classificationAntimicrobialMicrococcus luteusSettore ING-IND/22 - Scienza E Tecnologia Dei MaterialiEquipment and Suppliessurgical monofilamentsAnti-Infective Agents LocalMicroscopy Electron ScanningMicrococcus luteusAntibacterial activityCaprolactoneBiotechnologyNuclear chemistrymedicine.drugBacillus subtilisApplied microbiology and biotechnology
researchProduct

In vitro degradation of porous PLLA/pearl powder composite scaffolds

2013

Abstract The in vitro degradation behavior of poly- l -lactide (PLLA), PLLA/aragonite pearl powder and PLLA/vaterite pearl powder scaffolds was investigated. The scaffolds were soaked in phosphate buffer solution (PBS) up to 200 days. Scanning electron microscopy (SEM), gel permeation chromatography (GPC), and differential scanning calorimetry (DSC) were used to observe any degradation of the scaffolds. Degradation behaviors such as changes in pH, porosity, bulk density, water absorption, weight loss and mechanical properties were discussed. The results show that a gradual increase of the pH in composite scaffolds can decrease the rate of hydrolysis of PLLA. PLLA/vaterite and PLLA/aragonite…

Time FactorsMaterials scienceAbsorption of waterCompressive StrengthScanning electron microscopePolyestersComposite numberBioengineeringBuffersAbsorptionCalcium CarbonateBiomaterialsGel permeation chromatographyHydrolysischemistry.chemical_compoundDifferential scanning calorimetryVateriteAnimalsTransition TemperatureComposite materialLactideCalorimetry Differential ScanningTissue ScaffoldsWaterHydrogen-Ion ConcentrationMolecular WeightSolutionsChemical engineeringchemistryMechanics of MaterialsMicroscopy Electron ScanningCalciumPowdersPorosityMaterials Science and Engineering: C
researchProduct

Vascular Endothelial Growth Factor-Releasing Microspheres Based on Poly(ε-Caprolactone-PEG-ε-Caprolactone)-b-Poly(L-Lactide) Multiblock Copolymers In…

2020

Pancreatic islet transplantation is a promising advanced therapy that has been used to treat patients suffering from diabetes type 1. Traditionally, pancreatic islets are infused via the portal vein, which is subsequently intended to engraft in the liver. Severe immunosuppressive treatments are necessary, however, to prevent rejection of the transplanted islets. Novel approaches therefore have focused on encapsulation of the islets in biomaterial implants which can protect the islets and offer an organ-like environment. Vascularization of the device’s surface is a prerequisite for the survival and proper func- tioning of transplanted pancreatic islets. We are pursuing a prevascularization s…

Vascular Endothelial Growth Factor APDMS implantsTime FactorsDrug CompoundingPolyestersPharmaceutical Science02 engineering and technology030226 pharmacology & pharmacyPolyethylene Glycols03 medical and health scienceschemistry.chemical_compound0302 clinical medicinePEG ratioHyaluronic acidHuman Umbilical Vein Endothelial CellsmedicineHumansDimethylpolysiloxanesHyaluronic Aciddiabetes type 1Cells CulturedCell Proliferationmultiblock copolymersDrug ImplantsDrug CarriersPancreatic isletsartificial pancreasBiomaterial021001 nanoscience & nanotechnologyControlled releaseVEGFMicrospheres3. Good healthVascular endothelial growth factorDrug Liberationmedicine.anatomical_structurechemistryPrinting Three-DimensionalAngiogenesis Inducing AgentsPancreatic islet transplantationcontrolled release PDMS implants VEGF multiblock copolymers diabetes type 1 artificial pancreas0210 nano-technologycontrolled releaseCaprolactoneBiomedical engineering
researchProduct

Photo-Oxidative and Soil Burial Degradation of Irrigation Tubes Based on Biodegradable Polymer Blends

2019

: Irrigation tubes based on biodegradable polymers were prepared via an extrusion-drawing process by Irritec and compared to conventional pipes made of high-density polyethylene (HDPE). A commercial polylactide/poly (butyleneadipate-co-butyleneterephthalate) (PLA/PBAT) blend (Bio-Flex&reg

biodegradable polymers; rheological properties; irrigation pipes; soil burial test; polyesters; Bio-Flex®; Mater-Bi®; polymer degradation; photo-oxidationIrrigationMaterials sciencePolymers and PlasticsBio-Flex<sup>®</sup>polymer degradationIrrigation pipePolyester02 engineering and technologyMater-Bi<sup>®</sup>polyesters010402 general chemistry01 natural sciencesArticlelcsh:QD241-441chemistry.chemical_compoundPolymer degradationlcsh:Organic chemistryBiodegradable polymerRheological propertieIrradiationirrigation pipeschemistry.chemical_classificationsoil burial testGeneral ChemistryPolymerPolyethylene021001 nanoscience & nanotechnologyBiodegradable polymerphoto-oxidation0104 chemical sciencesrheological propertiesChemical engineeringchemistrybiodegradable polymersDegradation (geology)Bio-Flex®High-density polyethylene0210 nano-technologyMater-Bi®Polymers
researchProduct

On the compatibilization of PET/HDPE blends through a new class of copolyesters

2000

Polyethyleneterephthalate (PET) and polyethylene are incompatible polymers and their blends show, in general, poor properties. Compatibilization is then a necessary step to obtain blends with good mechanical and barrier properties. In this work different compatibilizing agents were used, i.e. a maleic anhydride elastomer and some new products containing graft-copolymers having polyester segments grafted onto polyethylene backbone chains. Both the functionalized elastomer and the new products drastically improve the morphology and the ductility of the blend. In the case of the modified elastomer the compatibilizing action has been attributed to the formation of H-bonds whereas the copolymers…

chemistry.chemical_classificationPOLYETHYLENEMaterials sciencecompatibilizationPolymers and PlasticsOrganic ChemistryPET/HDPE blendsMaleic anhydridePolymerCompatibilizationPolyethyleneElastomercopolyestersLIQUID-CRYSTALLINE POLYMERPolyesterchemistry.chemical_compoundPET/HDPE blends; copolyesters; compatibilization; LIQUID-CRYSTALLINE POLYMER; POLYETHYLENEchemistryChemical engineeringMaterials ChemistryPolymer blendHigh-density polyethyleneComposite materialPolymer
researchProduct