Search results for "Polytope"

showing 10 items of 25 documents

A closer look at mirrors and quotients of Calabi-Yau threefolds

2016

Let X be the toric variety (P1)4 associated with its four-dimensional polytope 1. Denote by X˜ the resolution of the singular Fano variety Xo associated with the dual polytope 1o. Generically, anticanonical sections Y of X and anticanonical sections Y˜ of X˜ are mirror partners in the sense of Batyrev. Our main result is the following: the Hodge-theoretic mirror of the quotient Z associated to a maximal admissible pair (Y, G) in X is not a quotient Z˜ associated to an admissible pair in X˜ . Nevertheless, it is possible to construct a mirror orbifold for Z by means of a quotient of a suitable Y˜. Its crepant resolution is a Calabi-Yau threefold with Hodge numbers (8, 4). Instead, if we star…

Pure mathematics010308 nuclear & particles physics010102 general mathematicsToric varietyPolytopeFano varietymirror symmetry01 natural sciencesTheoretical Computer ScienceMathematics::Algebraic GeometryMathematics (miscellaneous)0103 physical sciencesCalabi-YauCrepant resolutionCalabi–Yau manifoldMirror Symmetry Calabi-Yau QuotientsSettore MAT/03 - Geometria0101 mathematicsMathematics::Symplectic GeometryQuotientOrbifoldMAT/03 - GEOMETRIAMathematicsResolution (algebra)
researchProduct

Robust control of uncertain multi-inventory systems via linear matrix inequality

2008

We consider a continuous time linear multi inventory system with unknown demands bounded within ellipsoids and controls bounded within ellipsoids or polytopes. We address the problem of "-stabilizing the inventory since this implies some reduction of the inventory costs. The main results are certain conditions under which "-stabilizability is possible through a saturated linear state feedback control. All the results are based on a Linear Matrix Inequalities (LMIs) approach and on some recent techniques for the modeling and analysis of polytopic systems with saturations.

Mathematical optimizationLinear Matrix InequalitiesPolytopeDynamical Systems (math.DS)stock control93xxcontinuous systems linear matrix inequalities linear systems manufacturing systems robust control state feedback stock control uncertain systemsimpulse control inventory control hybrid systemsSettore ING-INF/04 - AutomaticaControl theoryFOS: Mathematicsmanufacturing systemsMathematics - Dynamical Systemslinear matrix inequalitiesstate feedbackTime complexityMathematics - Optimization and ControlInventory systemsMathematicsInventory controlLinear Matrix Inequalities; Inventory systemsLinear systemlinear systemsLinear matrix inequality93Cxx;93xxLinearity93Cxxhybrid systemsEllipsoidComputer Science Applicationsimpulse control; inventory control; hybrid systemsuncertain systemsControl and Systems EngineeringOptimization and Control (math.OC)Control systemBounded functioncontinuous systemsPerpetual inventorycontinuous systems; linear matrix inequalities; linear systems; manufacturing systems; robust control; state feedback; stock control; uncertain systemsinventory controlRobust controlSettore MAT/09 - Ricerca Operativarobust controlimpulse control
researchProduct

The polyhedral Hodge number $h^{2,1}$ and vanishing of obstructions

2000

We prove a vanishing theorem for the Hodge number $h^{2,1}$ of projective toric varieties provided by a certain class of polytopes. We explain how this Hodge number also gives information about the deformation theory of the toric Gorenstein singularity derived from the same polytope. In particular, the vanishing theorem for $h^{2,1}$ implies that these deformations are unobstructed.

AlgebraPure mathematicsClass (set theory)Mathematics::Algebraic GeometrySingularityMathematics::Commutative AlgebraGeneral MathematicsDeformation theoryPolytope52B2014M25Mathematics::Symplectic GeometryMathematicsTohoku Mathematical Journal
researchProduct

The Bernstein Basis and its applications in solving geometric constraint systems

2012

International audience; This article reviews the properties of Tensorial Bernstein Basis (TBB) and its usage, with interval analysis, for solving systems of nonlinear, univariate or multivariate equations resulting from geometric constraints. TBB are routinely used in computerized geometry for geometric modelling in CAD-CAM, or in computer graphics. They provide sharp enclosures of polynomials and their derivatives. They are used to reduce domains while preserving roots of polynomial systems, to prove that domains do not contain roots, and to make existence and uniqueness tests. They are compatible with standard preconditioning methods and fit linear program- ming techniques. However, curre…

Algebraic systems[ INFO.INFO-NA ] Computer Science [cs]/Numerical Analysis [cs.NA]Univariate and multivariate polynomials[INFO.INFO-NA] Computer Science [cs]/Numerical Analysis [cs.NA]ComputingMethodologies_SYMBOLICANDALGEBRAICMANIPULATION[INFO.INFO-NA]Computer Science [cs]/Numerical Analysis [cs.NA]Geometric constraint solving. Bernstein polytopeTensorial Bernstein basis
researchProduct

Skeleta of affine hypersurfaces

2014

A smooth affine hypersurface Z of complex dimension n is homotopy equivalent to an n-dimensional cell complex. Given a defining polynomial f for Z as well as a regular triangulation of its Newton polytope, we provide a purely combinatorial construction of a compact topological space S as a union of components of real dimension n, and prove that S embeds into Z as a deformation retract. In particular, Z is homotopy equivalent to S.

Pure mathematicsPolynomialMathematicsofComputing_GENERALAffinePolytopeComplex dimensionTopological spaceTriangulation14J70Mathematics - Algebraic GeometryComputingMethodologies_SYMBOLICANDALGEBRAICMANIPULATIONFOS: MathematicsHomotopy equivalenceAlgebraic Topology (math.AT)Mathematics - Algebraic TopologyKato–Nakayama spaceAlgebraic Geometry (math.AG)SkeletonMathematicsToric degenerationTriangulation (topology)HomotopyLog geometry14J70 14R99 55P10 14M25 14T05RetractionHypersurfaceHypersurfaceNewton polytopeSettore MAT/03 - GeometriaGeometry and TopologyAffine transformationKato-Nakayama space14R99
researchProduct

Approximation of the Feasible Parameter Set in worst-case identification of Hammerstein models

2005

The estimation of the Feasible Parameter Set (FPS) for Hammerstein models in a worst-case setting is considered. A bounding procedure is determined both for polytopic and ellipsoidic uncertainties. It consists in the projection of the FPS of the extended parameter vector onto suitable subspaces and in the solution of convex optimization problems which provide Uncertainties Intervals of the model parameters. The bounds obtained are tighter than in the previous approaches. hes.

Mathematical optimizationEstimation theorySystem identificationIdentification (control systems)PolytopeLinear subspaceInterval arithmeticSettore ING-INF/04 - AutomaticaControl and Systems EngineeringBounding overwatchConvex optimizationNonlinear systemsApplied mathematicsElectrical and Electronic EngineeringProjection (set theory)static nonlinearityMathematics
researchProduct

An upper bound for nonlinear eigenvalues on convex domains by means of the isoperimetric deficit

2010

We prove an upper bound for the first Dirichlet eigenvalue of the p-Laplacian operator on convex domains. The result implies a sharp inequality where, for any convex set, the Faber-Krahn deficit is dominated by the isoperimetric deficit.

Convex hullConvex analysisp-Laplace operatorGeneral MathematicsMathematical analysisConvex setDirichlet eigenvalueSubderivativeMathematics::Spectral TheoryCombinatoricsupper boundsSettore MAT/05 - Analisi MatematicaConvex polytopeConvex combinationAbsolutely convex setIsoperimetric inequalityMathematics
researchProduct

Pure Functions in C: A Small Keyword for Automatic Parallelization

2017

AbstractThe need for parallel task execution has been steadily growing in recent years since manufacturers mainly improve processor performance by increasing the number of installed cores instead of scaling the processor’s frequency. To make use of this potential, an essential technique to increase the parallelism of a program is to parallelize loops. Several automatic loop nest parallelizers have been developed in the past such as PluTo. The main restriction of these tools is that the loops must be statically analyzable which, among other things, disallows function calls within the loops. In this article, we present a seemingly simple extension to the C programming language which marks fun…

LOOP (programming language)Computer sciencemedia_common.quotation_subject020209 energy02 engineering and technologyParallel computingcomputer.software_genreToolchainTheoretical Computer ScienceTask (computing)Automatic parallelizationSide effect (computer science)Parallel processing (DSP implementation)020204 information systemsTheory of computationParallelism (grammar)0202 electrical engineering electronic engineering information engineeringPolytope model020201 artificial intelligence & image processingCompilerFunction (engineering)computerSoftwareInformation Systemsmedia_common2017 IEEE International Conference on Cluster Computing (CLUSTER)
researchProduct

Polyhedral results for a vehicle routing problem

1991

Abstract The Vehicle Routing Problem is a well known, and hard, combinatorial problem, whose polyhedral structure has deserved little attention. In this paper we consider the particular case in which all the demands are equal (since in the general case the associated polytope may be empty). From a known formulation of the problem we obtain the dimension of the corresponding polytope and we study the facetial properties of every inequality in it.

Discrete mathematicsFacet (geometry)Information Systems and ManagementGeneral Computer ScienceDimension (graph theory)Structure (category theory)PolytopeManagement Science and Operations ResearchIndustrial and Manufacturing EngineeringCombinatoricsModeling and SimulationVehicle routing problemRouting (electronic design automation)Integer programmingVertex enumeration problemMathematicsEuropean Journal of Operational Research
researchProduct

OPTIMIZATIONS FOR TENSORIAL BERNSTEIN–BASED SOLVERS BY USING POLYHEDRAL BOUNDS

2010

The tensorial Bernstein basis for multivariate polynomials in n variables has a number 3n of functions for degree 2. Consequently, computing the representation of a multivariate polynomial in the tensorial Bernstein basis is an exponential time algorithm, which makes tensorial Bernstein-based solvers impractical for systems with more than n = 6 or 7 variables. This article describes a polytope (Bernstein polytope) with a number of faces, which allows to bound a sparse, multivariate polynomial expressed in the canonical basis by solving several linear programming problems. We compare the performance of a subdivision solver using domain reductions by linear programming with a solver using a c…

[ INFO.INFO-NA ] Computer Science [cs]/Numerical Analysis [cs.NA]Linear programmingPolytopeBernstein polynomials01 natural sciencesSimplex algorithmApplied mathematicssimplex algorithm0101 mathematicsMathematicsDiscrete mathematicsBasis (linear algebra)Applied Mathematics010102 general mathematicssubdivision solverlinear programmingalgebraic systemsQuadratic function[INFO.INFO-NA]Computer Science [cs]/Numerical Analysis [cs.NA]Solver1991 Mathematics Subject Classification: 14Q15 14Q20 65G40Bernstein polynomialComputer Science Applications010101 applied mathematicsModeling and SimulationStandard basisGeometry and TopologyComputer Vision and Pattern RecognitionSoftwareInternational Journal of Shape Modeling
researchProduct