Search results for "Porifera"

showing 10 items of 196 documents

Phylogenetic relationship of ubiquitin repeats in the polyubiquitin gene from the marine sponge Geodia cydonium

1994

Ubiquitin is a 76-residue protein which is highly conserved among eukaryotes. Sponge (Porifera) ubiquitin, isolated from Geodia cydonium, is encoded by a gene (termed GCUBI) with six repeats, GCUBI-1 to GCUBI-6. All repeat units encode the same protein (with one exception: GCUBI-4 encodes ubiquitin with a change of Leu to Val at position 71). On the nt level the sequences of the six repeats differ considerably. All changes (except in GCUBI-4) are silent substitutions, which do not affect the protein structure. However, there is one major difference between the repeats: Codons from both codon families (TCN and AGPy) are simultaneously used for the serine at position 65. Using this characteri…

Sequence analysisMolecular Sequence Datamedicine.disease_causeUbiquitinPhylogeneticsGene duplicationGeneticsmedicineAnimalsGeodiaAmino Acid SequenceUbiquitinsMolecular BiologyGenePhylogenyEcology Evolution Behavior and SystematicsRepetitive Sequences Nucleic AcidGeneticsMutationBase SequencebiologyPhylogenetic treeDNASequence Analysis DNAbiology.organism_classificationBiological EvolutionPoriferaMutationbiology.proteinJournal of Molecular Evolution
researchProduct

Novel bioactive bromopyrrole alkaloids from the Mediterranean sponge Axinella verrucosa

2005

The Mediterranean sponge Axinella verrucosa has been investigated for its alkaloid composition and has been found to produce a complex mixture of bromopyrrole alkaloids. Along with the previously isolated compounds 5-18, four novel alkaloids of this class, compounds 1-4, have been isolated, and their structures established through spectroscopic methods. Compounds 1-4 were found to display neuroprotective activity against the agonists serotonin and glutamate in vitro.

SerotoninSpectrometry Mass Electrospray Ionizationendocrine systemAxinella verrucosaMagnetic Resonance SpectroscopyStereochemistryClinical BiochemistryThin layerGlutamic AcidPharmaceutical ScienceSpectrometry Mass Fast Atom BombardmentPharmacognosycomplex mixturesBiochemistryAnimal originPyrrole derivativesNatural productCell LineAlkaloidsBromopyrrole alkaloidDrug DiscoveryAnimalsPyrrolesheterocyclic compoundsMolecular BiologyNeuronsMarine spongeMolecular StructurebiologyChemistryorganic chemicalsAlkaloidOrganic ChemistryQuisqualic AcidBiological activitybiology.organism_classificationPoriferaSpongeNeuroprotective activity.Axinella verrucosaMolecular MedicineCalciumChromatography Thin LayerSerotonin AntagonistsExcitatory Amino Acid Antagonists
researchProduct

In vivo exposure of the marine sponge Chondrilla nucula Schmidt, 1862 to cadmium (Cd), copper (Cu) and lead (Pb) and its potential use for bioremedia…

2018

Abstract The study aimed to test the cadmium (Cd), copper (Cu) and lead (Pb) bioaccumulation capacity of the marine sponge Chondrilla nucula and to measure the expression of metallothioneins (MTs) by a western blotting assay to explore metal tolerance and its potential use as a bioremediator in contaminated coastal areas. C. nucula was sampled in a protected marine area in order to perform experiments on organisms living in a healthy environment. Under laboratory conditions, the sponges were exposed to increasing concentrations of Cd, Cu and Pb in tanks filled with artificial seawater set up for the experiments. For each metal, three waterborne concentrations (mgL−1) of Cd (0.02–0.04-0.08),…

Settore BIO/07 - Ecologia0301 basic medicineEnvironmental EngineeringHealth Toxicology and Mutagenesischemistry.chemical_elementArtificial seawater010501 environmental sciences01 natural sciences03 medical and health sciencesBioremediationSpongeEnvironmental ChemistryAnimalsChondrilla nucula0105 earth and related environmental sciencesCadmiumbiologyAnimalPublic Health Environmental and Occupational HealthEnvironmental engineeringGeneral MedicineGeneral ChemistryContaminationbiology.organism_classificationChondrilla nuculaPollutionCopperPoriferaSpongeHeavy metal030104 developmental biologyBiodegradation EnvironmentalHeavy metalschemistryLeadSpongesEnvironmental chemistryBioaccumulationBiodegradationBioremediation Chondrilla nucula Heavy metals SpongesBioremediationCopperCadmiumChemosphere
researchProduct

Molecular cloning and primary structure of a Rhesus (Rh)-like protein from the marine sponge Geodia cydonium

1997

In humans, the 30,000 M(r) Rhesus (Rh) polypeptide D (RhD) is a dominant antigen (Ag) of the Rh blood group system. To date, an Rh-like protein has been found in chimpanzees, gorillas, gibbons, and rhesus monkeys. Related to the 30,000 M(r) Rh Ag protein are two polypeptides of 50,000 M(r), the human 50,000 M(r) Rh Ag and the RhD-like protein from Caenorhabditis elegans. The function of all these proteins is not sufficiently known. Here we characterize a cDNA clone (GCRH) encoding a putative 57,000 M(r) polypeptide from the marine sponge Geodia cydonium, which shares sequence similarity both to the RhD Ag and the Rh50 glycoprotein. The sponge Rh-like protein comprises 523 aa residues; hydro…

Signal peptideDNA ComplementaryMolecular Sequence DataImmunologyMolecular cloningGeneticsAnimalsHumansAmino Acid SequenceCloning MolecularCaenorhabditis elegansGlycoproteinschemistry.chemical_classificationRh-Hr Blood-Group SystemBase SequenceSequence Homology Amino AcidbiologyProtein primary structurebiology.organism_classificationMolecular biologyPoriferaSpongeTransmembrane domainchemistryGlycoproteinRh blood group systemImmunogenetics
researchProduct

Sponges (Porifera) as living metazoan witnesses from the Neoproterozoic: biomineralization and the concept of their evolutionary success

2010

Terra Nova, 22, 1–11, 2010 Abstract The emergence of the Metazoa can be dated back to the Neoproterozoic Era which comprises the Cryogenian Period during which two major glaciations occurred, the Sturtian and the Varanger-Marinoan. At that time, the phylum Porifera (sponges) evolved as the first animals and developed a hard skeleton. The two classes of siliceous sponges, the Hexactinellida and the Demospongiae, are already provided with the major genetic repertoire and gene regulatory networks that also exist in modern multicellular animals. Besides these metazoan innovations, the siliceous sponges display one autapomorphic character, silicatein, an enzyme which mediates bio-silica formatio…

Siliceous spongeAutapomorphyPhylum PoriferaEvolutionary biologyEcologyMulticellular animalsPeriod (geology)GeologyBurgess ShaleBiologyBiomineralizationTerra Nova
researchProduct

Isolation and characterization of two T-box genes from sponges, the phylogenetically oldest metazoan taxon

2003

It is now well established that all metazoan phyla derived from one common ancestor, the hypothetical Urmetazoa. Due to the basal position of Porifera (Demospongiae) in the phylogenetic tree of Metazoa, studies on the mechanisms controlling the development of these animals can provide clues on the understanding of the origin of multicellular animals and on how the first organization of the body plan evolved. In this report we describe the isolation and genomic characterization of two T-box genes from the siliceous sponge Suberites domuncula. The phylogenetic analysis classifies one into the subfamily of Brachyury, Sd-Bra, and the second into the Tbx2 subfamily, Sd-Tbx2. Analyses of the Sd-B…

Siliceous spongeBrachyuryDNA ComplementarySubfamilyMolecular Sequence DataMolecular evolutionPhylogeneticsGeneticsAnimalsProtein IsoformsElectrophoresis Gel Two-DimensionalAmino Acid SequencePhylogenyBase SequencebiologyPhylogenetic treeSequence Analysis DNAAnatomybiology.organism_classificationPoriferaSuberites domunculaAlternative SplicingBody planEvolutionary biologyT-Box Domain ProteinsProtein Processing Post-TranslationalDevelopmental BiologyDevelopment Genes and Evolution
researchProduct

Formation of silicones mediated by the sponge enzyme silicatein-α

2010

The sponge-restricted enzyme silicatein-α catalyzes in vivo silica formation from monomeric silicon compounds from sea water (i.e. silicic acid) and plays the pivotal role during synthesis of the siliceous sponge spicules. Recombinant silicatein-α, which was cloned from the demosponge Suberites domuncula (phylum Porifera), is shown to catalyze in vitro condensation of alkoxy silanes during a phase transfer reaction at neutral pH and ambient temperature to yield silicones like the straight-chained polydimethylsiloxane (PDMS). The reported condensation reaction is considered to be the first description of an enzymatically enhanced organometallic condensation reaction.

Siliceous spongeMagnetic Resonance SpectroscopySilanesPolydimethylsiloxanebiologyStereochemistrySiliconesSilanesCondensation reactionbiology.organism_classificationCathepsinsRecombinant ProteinsPoriferaInorganic ChemistrySuberites domunculachemistry.chemical_compoundSpongechemistryBiocatalysisAlkoxy groupAnimalsDimethylpolysiloxanesSilicic acidDalton Transactions
researchProduct

Localization and Characterization of Ferritin in Demospongiae: A Possible Role on Spiculogenesis

2014

Iron, as inorganic ion or as oxide, is widely used by biological systems in a myriad of biological functions (e.g., enzymatic, gene activation and/or regulation). In particular, marine organisms containing silica structures—diatoms and sponges—grow preferentially in the presence of iron. Using primary sponge cell culture from S. domuncula–primmorphs—as an in vitro model to study the Demospongiae spiculogenesis, we found the presence of agglomerates 50 nm in diameter exclusively inside sponge specialized cells called sclerocytes. A clear phase/material separation is observed between the agglomerates and the initial stages of intracellular spicule formation. STEM-HRTEM-EDX analysis of the agg…

SpiculeIronIron oxidePharmaceutical ScienceNanotechnologyFerric CompoundsArticle<i>Suberites domuncula</i>; primmorphs; iron; ferritin; spiculogenesischemistry.chemical_compoundprimmorphsDrug DiscoveryAnimalslcsh:QH301-705.5Pharmacology Toxicology and Pharmaceutics (miscellaneous)Cells CulturedSclerocyteDiatomsbiologyferritinHematitebiology.organism_classificationSilicon DioxideSuberites domunculaspiculogenesisPoriferaFerritinSuberites domunculaSpongelcsh:Biology (General)chemistryvisual_artFerritinsbiology.proteinBiophysicsvisual_art.visual_art_mediumSuberitesSuberitesMarine Drugs
researchProduct

Bioorganic/inorganic hybrid composition of sponge spicules: matrix of the giant spicules and of the comitalia of the deep sea hexactinellid Monorhaph…

2007

The giant basal spicules of the siliceous sponges Monorhaphis chuni and Monorhaphis intermedia (Hexactinellida) represent the largest biosilica structures on earth (up to 3 m long). Here we describe the construction (lamellar organization) of these spicules and of the comitalia and highlight their organic matrix in order to understand their mechanical properties. The spicules display three distinct regions built of biosilica: (i) the outer lamellar zone (radius: >300 mu m), (ii) the bulky axial cylinder (radius: <75 mu m), and (iii) the central axial canal (diameter: <2 mu m) with its organic axial filament. The spicules are loosely covered with a collagen net which is regularly perforated …

SpiculeMaterials scienceBinding SitesbiologyHexactinellidScanning electron microscopebiology.organism_classificationPoriferaCrystallographySponge spiculeStructural BiologyMicroscopy Electron ScanningAnimalsLamellar structureCollagenComposite materialElasticity (economics)PorosityDissolutionPeptide HydrolasesJournal of structural biology
researchProduct

Crystalline nanorods as possible templates for the synthesis of amorphous biosilica during spicule formation in Demospongiae.

2009

In tandem: High-resolution TEM shows that during the initial stages of demosponge spicule formation, a primordial crystalline structure is formed within the axial filament. The recently developed electron diffraction tomography technique (ADT) reveals that the nanorods have a layered structure that matches smectitic phyllosilicates. These intracellular nanorods have been considered as precursors of mature spicules. High-resolution microscopy shows that, during the initial stages of demosponge spicule formation, a primordial crystalline structure is formed within the axial filament. The recently developed electron diffraction tomography technique reveals that the nanorods have a layered stru…

SpiculeMaterials scienceElectronsCrystal structureBiochemistrybioinorganic chemistryDemospongeSponge spiculeMicroscopy Electron TransmissionX-Ray DiffractionnanostructuresAnimalsMolecular BiologyNanotubesbiologyElectron crystallographysilicateinOrganic Chemistrybioinorganic chemistry; electron crystallography; nanostructures; silicatein; spiculesbiology.organism_classificationSilicon DioxidespiculesAmorphous solidPoriferaCrystallographyelectron crystallographyElectron diffractionMicroscopy Electron ScanningMolecular MedicineNanorodChembiochem : a European journal of chemical biology
researchProduct