Search results for "Protein Conformation"

showing 10 items of 515 documents

Off-Target-Based Design of Selective HIV-1 PROTEASE Inhibitors

2021

The approval of the first HIV-1 protease inhibitors (HIV-1 PRIs) marked a fundamental step in the control of AIDS, and this class of agents still represents the mainstay therapy for this illness. Despite the undisputed benefits, the necessary lifelong treatment led to numerous severe side-effects (metabolic syndrome, hepatotoxicity, diabetes, etc.). The HIV-1 PRIs are capable of interacting with “secondary” targets (off-targets) characterized by different biological activities from that of HIV-1 protease. In this scenario, the in-silico techniques undoubtedly contributed to the design of new small molecules with well-fitting selectivity against the main target, analyzing possible undesirabl…

0301 basic medicineon/off-targetsProtein ConformationComputer sciencemedicine.medical_treatmentHIV InfectionsLigands01 natural sciencesHIV ProteaseHIV-1 proteaseCatalytic DomainDrug DiscoveryBiology (General)DRUDITSpectroscopyMolecular StructurebiologyGeneral MedicineResearch processSmall moleculeComputer Science ApplicationsMolecular Docking SimulationChemistryligand-structure basedQH301-705.5NCI databaseComputational biologyArticleCatalysisInorganic ChemistryStructure-Activity Relationshipmolecular descriptors03 medical and health sciencesHIV-1 proteasemedicineHumansComputer SimulationPhysical and Theoretical ChemistryQD1-999Molecular BiologyVirtual screeningProteaseOrganic ChemistryHIV Protease Inhibitorsmolecular dockingvirtual screening0104 chemical sciences010404 medicinal & biomolecular chemistry030104 developmental biologyDrug DesignHIV-1biology.proteinInternational Journal of Molecular Sciences
researchProduct

Protonation of the Biliverdin IXα Chromophore in the Red and Far-Red Photoactive States of a Bacteriophytochrome

2019

The tetrapyrrole chromophore biliverdin IXα (BV) in the bacteriophytochrome from Deinococcus radiodurans (DrBphP) is usually assumed to be fully protonated, but this assumption has not been systematically validated by experiments or extensive computations. Here, we use force field molecular dynamics simulations and quantum mechanics/molecular mechanics calculations with density functional theory and XMCQDPT2 methods to investigate the effect of the five most probable protonation forms of BV on structural stability, binding pocket interactions, and absorption spectra in the two photochromic states of DrBphP. While agreement with X-ray structural data and measured UV/vis spectra suggest that …

Absorption spectroscopyProtein ConformationPopulationProtonationMolecular Dynamics SimulationCrystallography X-Ray010402 general chemistryPhotochemistry01 natural sciencesArticlequantum chemistrychemistry.chemical_compoundMolecular dynamicsPhotochromismBacterial Proteins0103 physical scienceskvanttikemiaMaterials ChemistrymolekyylidynamiikkaPhysical and Theoretical Chemistryeducationta116excited statesphytochromeeducation.field_of_studyBinding SitesBiliverdin010304 chemical physicsChemistryBiliverdineta1182Chromophoremolecular dynamics3. Good health0104 chemical sciencesSurfaces Coatings and FilmsSpectrophotometry UltravioletDensity functional theoryDeinococcusvalokemiaproteiinitThe Journal of Physical Chemistry B
researchProduct

Binding of basic amphipathic peptides to neutral phospholipid membranes: a thermodynamic study applied to dansyl-labeled melittin and substance P ana…

1997

A thermodynamic approach is proposed to quantitatively analyze the binding isotherms of peptides to model membranes as a function of one adjustable parameter, the actual peptide charge in solution z(p)+. The main features of this approach are a theoretical expression for the partition coefficient calculated from the molar free energies of the peptide in the aqueous and lipid phases, an equation proposed by S. Stankowski [(1991) Biophysical Journal, Vol. 60, p. 341] to evaluate the activity coefficient of the peptide in the lipid phase, and the Debye-Huckel equation that quantifies the activity coefficient of the peptide in the aqueous phase. To assess the validity of this approach we have s…

Activity coefficientProtein ConformationLipid BilayersMolecular Sequence DataBiophysicsPhospholipidPeptideSubstance PBiochemistryMelittinBiomaterialschemistry.chemical_compoundElectrochemistryOrganic chemistryAmino Acid Sequencechemistry.chemical_classificationDansyl CompoundsAqueous solutionTransglutaminasesChemistryOrganic ChemistryGeneral MedicineMelittenPartition coefficientCrystallographyMembraneSpectrometry FluorescenceIonic strengthThermodynamicsBiopolymers
researchProduct

Novel mutations of the MET proto-oncogene in papillary renal carcinomas.

1999

Hereditary papillary renal carcinoma (HPRC) is characterized by multiple, bilateral papillary renal carcinomas. Previously, we demonstrated missense mutations in the tyrosine kinase domain of the MET proto-oncogene in HPRC and a subset of sporadic papillary renal carcinomas. In this study, we screened a large panel of sporadic papillary renal carcinomas and various solid tumors for mutations in the MET proto-oncogene. Summarizing these and previous results, mutations of the MET proto-oncogene were detected in 17/129 sporadic papillary renal carcinomas but not in other solid tumors. We detected five novel missense mutations; three of five mutations were located in the ATP-binding region of t…

AdenomaModels MolecularCancer ResearchProtein ConformationDNA Mutational AnalysisMolecular Sequence DataHereditary Papillary Renal Cell CarcinomaBiologymedicine.disease_causeTransfectionProto-Oncogene MasReceptor tyrosine kinaseMiceAdenosine TriphosphateNeoplastic Syndromes HereditaryProto-OncogenesGeneticsCarcinomamedicineMissense mutationAnimalsHumansPoint MutationAmino Acid SequencePhosphorylationCodonMolecular BiologyKidneyMutationBinding SitesSequence Homology Amino AcidPoint mutation3T3 CellsDNA NeoplasmProto-Oncogene Proteins c-metmedicine.diseaseCarcinoma PapillaryKidney NeoplasmsNeoplasm Proteinsmedicine.anatomical_structureCell Transformation NeoplasticCancer researchbiology.proteinMutagenesis Site-DirectedTyrosine kinaseProtein Processing Post-TranslationalSequence AlignmentOncogene
researchProduct

Variability in human hepatic MRP4 expression: influence of cholestasis and genotype

2007

The multidrug resistance protein 4 (MRP4) is an efflux transporter involved in the transport of endogenous substrates and xenobiotics. We measured MRP4 mRNA and protein expression in human livers and found a 38- and 45-fold variability, respectively. We sequenced 2 kb of the 5'-flanking region, all exons and intron/exon boundaries of the MRP4 gene in 95 patients and identified 74 genetic variants including 10 non-synonymous variations, seven of them being located in highly conserved regions. None of the detected polymorphisms was significantly associated with changes in the MRP4 mRNA or protein expression. Immunofluorescence microscopy indicated that none of the non-synonymous variations af…

AdultMaleGenotypeProtein ConformationBiologyPolymorphism Single NucleotideExonCholestasisTerminology as TopicGenotypeGenetic variationGeneticsmedicineHumansRNA MessengerGeneCellular localizationPharmacologyMessenger RNACholestasisPolymorphism GeneticReverse Transcriptase Polymerase Chain ReactionIntronGenetic VariationDNAmedicine.diseaseImmunohistochemistryMolecular biologyIntronsGene Expression RegulationHaplotypesLiverMicroscopy FluorescenceMolecular MedicineFemaleMultidrug Resistance-Associated ProteinsThe Pharmacogenomics Journal
researchProduct

NDST1 missense mutations in autosomal recessive intellectual disability.

2014

NDST1 was recently proposed as a candidate gene for autosomal recessive intellectual disability in two families. It encodes a bifunctional GlcNAc N-deacetylase/N-sulfotransferase with important functions in heparan sulfate biosynthesis. In mice, Ndst1 is crucial for embryonic development and homozygous null mutations are perinatally lethal. We now report on two additional unrelated families with homozygous missense NDST1 mutations. All mutations described to date predict the substitution of conserved amino acids in the sulfotransferase domain, and mutation modeling predicts drastic alterations in the local protein conformation. Comparing the four families, we noticed significant overlap in …

AdultMaleModels MolecularCandidate geneAdolescentGenotypeProtein ConformationDNA Mutational AnalysisMutation MissenseGenes RecessiveBiologyBioinformaticsPolymorphism Single NucleotideAnimals Genetically ModifiedEpilepsyConsanguinityYoung AdultProtein structureIntellectual DisabilityIntellectual disabilityGeneticsmedicineMissense mutationAnimalsHumansChildGenetics (clinical)GeneticsGene knockdownMuscular hypotoniaBehavior AnimalComputational BiologyFaciesHigh-Throughput Nucleotide Sequencingmedicine.diseasePhenotypePedigreePhenotypeChild PreschoolGene Knockdown TechniquesDrosophilaFemaleSulfotransferasesGenome-Wide Association StudyAmerican journal of medical genetics. Part A
researchProduct

Differential cysteine depletion in respiratory chain complexes enables the distinction of longevity from aerobicity.

2010

Mitochondrially encoded proteins in long-lived animals exhibit a characteristic anomaly on the amino acid usage level: they abstain from the use of cysteine in a lifespan-dependent fashion. Here, we have further investigated this phenomenon by analyzing respiratory chain complex subunits individually. We find that complex I cysteine depletion is the almost exclusive carrier of the cysteine-lifespan correlation, whereas complex IV cysteine depletion is uniform in all aerobic animals, unrelated to longevity, but even more pronounced than complex I cysteine depletion in the longest-lived species. In nuclear encoded subunits of the respiratory chain, we find lifespan-independent cysteine deplet…

AgingTime FactorsProtein ConformationRespiratory chainBiologyProtein oxidationProtein Structure SecondaryElectron TransportProtein structureOxygen ConsumptionAnimalsHumansCysteineSulfhydryl CompoundsPhylogenychemistry.chemical_classificationCell NucleusRespiratory chain complexMembrane ProteinsAerobiosisAmino acidMitochondriaProtein Structure TertiaryTransmembrane domainOxidative StressBiochemistrychemistryMembrane proteinDevelopmental BiologyCysteineMechanisms of ageing and development
researchProduct

Exploring kainate receptor pharmacology using molecular dynamics simulations.

2010

Ionotropic glutamate receptors (iGluRs) are enticing targets for pharmaceutical research; however, the search for selective ligands is a laborious experimental process. Here we introduce a purely computational procedure as an approach to evaluate ligand–iGluR pharmacology. The ligands are docked into the closed ligand-binding domain and during the molecular dynamics (MD) simulation the bi-lobed interface either opens (partial agonist/antagonist) or stays closed (agonist) according to the properties of the ligand. The procedure is tested with closely related set of analogs of the marine toxin dysiherbaine bound to GluK1 kainate receptor. The modeling is set against the abundant binding data …

AgonistModels Molecularmedicine.drug_classProtein ConformationIn silicoKainate receptorPharmacologyMolecular Dynamics SimulationLigandsPartial agonistArticleTurn (biochemistry)Cellular and Molecular NeuroscienceStructure-Activity RelationshipReceptors Kainic AcidmedicineStructure–activity relationshipPharmacologyAlanineMolecular StructureChemistryBridged Bicyclo Compounds HeterocyclicIonotropic glutamate receptorMarine ToxinsMarine toxinProtein BindingNeuropharmacology
researchProduct

Thermodynamic versus Conformational Metastability in Fibril-Forming Lysozyme Solutions

2012

The role of intermolecular interaction in fibril-forming protein solutions and its relation with molecular conformation is a crucial aspect for the control and inhibition of amyloid structures. Here, we study the fibril formation and the protein-protein interactions of lysozyme at acidic pH and low ionic strength. The amyloid formation occurs after a long lag time and is preceded by the formation of oligomers, which seems to be off-pathway with respect to fibrillation. By measuring the osmotic isothermal compressibility and the collective diffusion coefficient of lysozyme in solution, we observe that the monomeric solution is kept in a thermodynamically metastable state by strong electrosta…

AmyloidConformational changeProtein ConformationDiffusionOsmolar ConcentrationHydrogen-Ion ConcentrationFibrilProtein tertiary structurePolyelectrolyteSurfaces Coatings and FilmsSolutionschemistry.chemical_compoundMonomerchemistryChemical physicsMetastabilityMaterials ChemistryThermodynamicsMuramidasePhysical and Theoretical ChemistryLysozymeProtein BindingThe Journal of Physical Chemistry B
researchProduct

Glomerular basement membrane: evidence for collagenous domain of the alpha 3 and alpha 4 chains of collagen IV.

1990

Abstract A collagenous component(s) of Mr = 60K was extracted from glomerular basement membrane with urea and was purified. Upon digestion, it yielded a collagenase-resistant fragment(s) of Mr = 23.5K. Both component and fragment showed immunochemical identity with the noncollagenous domains of the new α3 & α4 chains of collagen IV. The component is characterized by a collagenous domain of about 280 residues and a noncollagenous domain of about 250 residues. These findings further establish these new chains as distinct entities of collagen IV.

Basement membraneGel electrophoresischemistry.chemical_classificationChemistryRenal glomerulusMacromolecular SubstancesProtein ConformationProtein subunitGlomerular basement membraneKidney GlomerulusBiophysicsBiological membraneCell BiologyBiochemistryBasement Membranemedicine.anatomical_structureBiochemistryDomain (ring theory)medicineAnimalsCattleCollagenAmino AcidsGlycoproteinMolecular BiologyBiochemical and biophysical research communications
researchProduct