Search results for "Protein Domain"

showing 10 items of 132 documents

Increased stability of the TM helix oligomer abrogates the apoptotic activity of the human Fas receptor

2021

Human death receptors control apoptotic events during cell differentiation, cell homeostasis and the elimination of damaged or infected cells. Receptor activation involves ligand-induced structural reorganizations of preformed receptor trimers. Here we show that the death receptor transmembrane domains only have a weak intrinsic tendency to homo-oligomerize within a membrane, and thus these domains potentially do not significantly contribute to receptor trimerization. However, mutation of Pro183 in the human CD95/Fas receptor transmembrane helix results in a dramatically increased interaction propensity, as shown by genetic assays. The increased interaction of the transmembrane domain is co…

Cellular differentiationBiophysicsApoptosisLigandsmedicine.disease_causeBiochemistryProtein DomainsmedicineHomeostasisHumansfas ReceptorReceptorMutationChemistryCell DifferentiationReceptors Death DomainCell BiologyFas receptorTransmembrane proteinCell biologyTransmembrane domainApoptosisMutationProtein MultimerizationSignal transductionSignal TransductionBiochimica et Biophysica Acta (BBA) - Biomembranes
researchProduct

Folding in vitro of light-harvesting chlorophyll a/b protein is coupled with pigment binding.

2002

The major light-harvesting chlorophyll a/b protein (LHCIIb) of the plant photosynthetic apparatus is able to self-organise in vitro. When the recombinant apoprotein, Lhcb1, is solubilised in the denaturing detergent sodium (or lithium) dodecylsulfate (SDS or LDS) and then mixed with chlorophylls and carotenoids under renaturing conditions, structurally authentic LHCIIb forms. Assembly of functional LHCIIb, as indicated by the establishment of energy transfer between complex-bound chlorophyll molecules, occurs in two apparent kinetic steps with time constants of 10 to 30 seconds and 50 to 300 seconds, depending on the reaction conditions. Here, we use circular dichroism (CD) in the far-UV ra…

Chlorophyll aCircular dichroismProtein FoldingCircular DichroismPigment bindingProtein domainPhotosynthetic Reaction Center Complex ProteinsLight-Harvesting Protein ComplexesPhotochemistryPhotosynthesisProtein Structure SecondaryRecombinant Proteinschemistry.chemical_compoundPigmentchemistryStructural BiologyChlorophyllvisual_artvisual_art.visual_art_mediumMolecular BiologyProtein secondary structureMicellesSequence DeletionJournal of molecular biology
researchProduct

Water-Soluble Chlorophyll Protein (WSCP) Stably Binds Two or Four Chlorophylls

2017

Water-soluble chlorophyll proteins (WSCPs) of class IIa from Brassicaceae form tetrameric complexes containing one chlorophyll (Chl) per apoprotein but no carotenoids. The complexes are remarkably stable toward dissociation and protein denaturation even at 100 °C and extreme pH values, and the Chls are partially protected against photooxidation. There are several hypotheses that explain the biological role of WSCPs, one of them proposing that they function as a scavenger of Chls set free upon plant senescence or pathogen attack. The biochemical properties of WSCP described in this paper are consistent with the protein acting as an efficient and flexible Chl scavenger. At limiting Chl concen…

ChlorophyllModels Molecular0106 biological sciences0301 basic medicineProtein DenaturationHot TemperatureLightLight-Harvesting Protein ComplexesGene ExpressionThylakoids01 natural sciencesBiochemistryProtein Structure SecondaryDissociation (chemistry)law.inventionchemistry.chemical_compoundlawpolycyclic compoundsDenaturation (biochemistry)CarotenoidPlant Proteinschemistry.chemical_classificationSinglet OxygenProtein Stabilityfood and beveragesHydrogen-Ion ConcentrationBiochemistryRecombinant DNAOxidation-ReductionProtein BindingRecombinant Fusion ProteinsBrassicamacromolecular substancesBiology03 medical and health sciencesProtein DomainsTetramerPlant senescenceChlorophyll APeasWaterOxygen030104 developmental biologyWater solubleSolubilitychemistryChlorophyllProtein MultimerizationApoproteins010606 plant biology & botanyBiochemistry
researchProduct

Transcriptome profiling of citrus fruit response to huanglongbing disease.

2010

Huanglongbing (HLB) or "citrus greening" is the most destructive citrus disease worldwide. In this work, we studied host responses of citrus to infection with Candidatus Liberibacter asiaticus (CaLas) using next-generation sequencing technologies. A deep mRNA profile was obtained from peel of healthy and HLB- affected fruit. It was followed by pathway and protein-protein network analysis and quantitative real time PCR analysis of highly regulated genes. We identified differentially regulated pathways and constructed networks that provide a deep insight into the metabolism of affected fruit. Data mining revealed that HLB enhanced transcription of genes involved in the light reactions of phot…

CitrusProtein FoldingGene Identification and Analysislcsh:MedicinePlant ScienceTranscriptomechemistry.chemical_compoundRNA interferencePlant Growth RegulatorsGene Expression Regulation PlantModelsGene expressionPlant Genomics2.1 Biological and endogenous factorsPhotosynthesisAetiologylcsh:SciencePlant Growth and DevelopmentPlant PestsMultidisciplinaryProtein StabilityJasmonic acidfood and beveragesHigh-Throughput Nucleotide SequencingAgriculturePlantsCell biologyCarbohydrate MetabolismResearch ArticleSignal TransductionGeneral Science & TechnologyPlant PathogensProtein degradationBiologyModels BiologicalFruitsMolecular GeneticsRhizobiaceaeSettore AGR/07 - Genetica AgrariaHeat shock proteinBotanyGeneticsGene RegulationGene NetworksBiologyTranscription factorPlant DiseasesAnalysis of VarianceGene Expression Profilinglcsh:RCitrus HLB next-generation sequencing candidatus liberibacterComputational BiologyPlantPlant PathologyBiologicalWRKY protein domainGene expression profilingchemistryGene Expression Regulationlcsh:QGene expressionGene FunctionTranscriptomeTranscription Factors
researchProduct

Comparative genomics and protein domain graph analyses link ubiquitination and RNA metabolism.

2006

The human gene parkin, known to cause familial Parkinson disease, as well as several other genes, likely involved in other neurodegenerative diseases or in cancer, encode proteins of the RBR family of ubiquitin ligases. Here, we describe the structural diversity of the RBR family in order to infer their functional roles. Of particular interest is a relationship detected between RBR-mediated ubiquitination and RNA metabolism: a few RBR proteins contain RNA binding domains and DEAH-box RNA helicase domains. Global protein domain graph analyses demonstrate that this connection is not RBR-specific, but instead many other proteins contain both ubiquitination and RNA-related domains. These protei…

Comparative genomicsGeneticsbiologyProtein ConformationUbiquitinUbiquitin-Protein LigasesProtein domainMolecular Sequence DataRNAGenomicsF-box proteinRNA Helicase AParkinUbiquitin ligaseProtein Structure TertiaryStructural Biologybiology.proteinAnimalsCluster AnalysisHumansRNAMolecular BiologyGeneAlgorithmsJournal of molecular biology
researchProduct

What monomeric nucleotide binding domains can teach us about dimeric ABC proteins

2020

The classic conceptualization of ATP binding cassette (ABC) transporter function is an ATP-dependent conformational change coupled to transport of a substrate across a biological membrane via the transmembrane domains (TMDs). The binding of two ATP molecules within the transporter's two nucleotide binding domains (NBDs) induces their dimerization. Despite retaining the ability to bind nucleotides, isolated NBDs frequently fail to dimerize. ABC proteins without a TMD, for example ABCE and ABCF, have NBDs tethered via elaborate linkers, further supporting that NBD dimerization does not readily occur for isolated NBDs. Intriguingly, even in full-length transporters, the NBD-dimerized, outward-…

Conformational changeBiophysicsContext (language use)ATP-binding cassette transporterBiochemistry03 medical and health sciencesAdenosine TriphosphateProtein DomainsStructural BiologyGeneticsAnimalsHumansNucleotideMolecular Biology030304 developmental biologychemistry.chemical_classification0303 health sciencesBinding Sites030302 biochemistry & molecular biologyTransporterBiological membraneCell BiologyTransmembrane domainchemistryCyclic nucleotide-binding domainBiophysicsATP-Binding Cassette Transporterslipids (amino acids peptides and proteins)Protein MultimerizationProtein BindingFEBS Letters
researchProduct

Deinococcus radiodurans' SRA-HNH domain containing protein Shp (Dr1533) is involved in faithful genome inheritance maintenance following DNA damage

2018

WOS:000452343100012; International audience; Background: Deinococcus radiodurans R1 (DR) survives conditions of extreme desiccation, irradiation and exposure to genotoxic chemicals, due to efficient DNA breaks repair, also through Mn2+ protection of DNA repair enzymes. Methods: Possible annotated domains of the DR1533 locus protein (Shp) were searched by bioinformatic analysis. The gene was cloned and expressed as fusion protein. Band-shift assays of Shp or the SRA and HNH domains were performed on oligonucleotides, genomic DNA from E. coif and DR. slip knock-out mutant was generated by homologous recombination with a kanamycin resistance cassette. Results: DR1533 contains an N-terminal SRA…

DNA RepairDNA cytosine-methylation; DNA damage; DR1533 locus; Genotoxic agents; Mn2+; SRA domain; Biophysics; Biochemistry; Molecular BiologyGenotoxic agents[SDV]Life Sciences [q-bio]DNA cytosine-methylationperspectiveSettore BIO/19 - Microbiologia GeneraleBiochemistrychemistry.chemical_compound0302 clinical medicineKanamycinCloning Molecularcytosine0303 health sciencesDR1533 locusbiologyChemistryGenotoxic agentuhrf1Mn(2+)Mn2+SRA domainDeinococcusrecognitionmanganese(ii)DNA BacterialDNA damageDNA repairoxidationUbiquitin-Protein LigasesBiophysicsSettore BIO/11 - Biologia Molecolareresistance03 medical and health sciencesBacterial ProteinsProtein DomainsDR1533 locuDrug Resistance BacterialEscherichia coliHumansfeaturesAmino Acid SequenceGeneMolecular Biology030304 developmental biologyOligonucleotideComputational BiologyDeinococcus radioduransDNA Methylationbiology.organism_classificationMolecular biologygenomic DNArepairMutationCCAAT-Enhancer-Binding ProteinsDNA damageHomologous recombination030217 neurology & neurosurgeryDNAGenome BacterialMutagens
researchProduct

Modeling of Cell Membrane Targeting: Specific Recognition, Binding, and Protein Domain Formation in Ligand-Containing Model Biomembranes

1990

Drug delivery systems are designed to assist, accelerate, and control transport of pharmacologically active agents from sites of administration to specified targets in organs and tissues. So-called controlled drug delivery systems are intended to maintain continuously efficacious drug concentrations in vivo, either locally or systemically, over longer time periods. They should provide constant dosage levels above a minimum level of efficacy yet below mandated toxicity levels — a significant advantage over many conventional systemically administered formulations. Site-specific targeting of drugs, particularly those agents which prove highly toxic in small doses, can be utilized to maintain t…

DrugChemistrymedia_common.quotation_subjectProtein domainLigand (biochemistry)Cell biologyCell membranemedicine.anatomical_structureTargeted drug deliveryIn vivoToxicityDrug deliverymedicinemedia_common
researchProduct

Microscopic interactions between ivermectin and key human and viral proteins involved in SARS-CoV-2 infection

2021

The identification of chemical compounds able to bind specific sites of the human/viral proteins involved in the SARS-CoV-2 infection cycle is a prerequisite to design effective antiviral drugs. Here we conduct a molecular dynamics study with the aim to assess the interactions of ivermectin, an antiparasitic drug with broad-spectrum antiviral activity, with the human Angiotensin-Converting Enzyme 2 (ACE2), the viral 3CLpro and PLpro proteases, and the viral SARS Unique Domain (SUD). The drug/target interactions have been characterized in silico by describing the nature of the non-covalent interactions found and by measuring the extent of their time duration along the MD simulation. Results …

DrugProteasesIn silicomedia_common.quotation_subjectProtein domainCoronavirus Papain-Like ProteasesGeneral Physics and AstronomyPlasma protein bindingBiologyAntiviral AgentsivermectinProtein DomainsMolecular dynamics simulationHumansPhysical and Theoretical ChemistryBinding siteCoronavirus 3C Proteasesmedia_commonchemistry.chemical_classificationSARS Unique DomainBinding SitesSARS-CoV-2SARS-CoV-2 infectionRNAHydrogen BondingVirologyG-QuadruplexesMolecular Docking SimulationEnzymechemistrySettore CHIM/03 - Chimica Generale E InorganicaRNAAngiotensin-Converting Enzyme 2Hydrophobic and Hydrophilic InteractionsProtein BindingPhysical Chemistry Chemical Physics
researchProduct

Identification of the essential protein domains for Mib2 function during the development of the Drosophila larval musculature and adult flight muscles

2016

The proper differentiation and maintenance of myofibers is fundamental to a functional musculature. Disruption of numerous mostly structural factors leads to perturbations of these processes. Among the limited number of known regulatory factors for these processes is Mind bomb2 (Mib2), a muscle-associated E3 ubiquitin ligase, which was previously established to be required for maintaining the integrity of larval muscles. In this study, we have examined the mechanistic aspects of Mib2 function by performing a detailed functional dissection of the Mib2 protein. We show that the ankyrin repeats, in its entirety, and the hitherto uncharacterized Mib-specific domains (MIB), are important for the…

EmbryologyLife CyclesMuscle PhysiologyMuscle FunctionsPhysiologylcsh:MedicineMuscle ProteinsAnkyrin Repeat DomainMuscle DevelopmentBiochemistryAnimals Genetically ModifiedMedicine and Health SciencesDrosophila Proteinslcsh:ScienceMusculoskeletal SystemAbdominal MusclesMusclesDrosophila MelanogasterMetamorphosis BiologicalPupaAnimal ModelsNaturwissenschaftliche FakultätAnkyrin RepeatInsectsExperimental Organism SystemsLarvaDrosophilaAnatomyResearch ArticleArthropoda-Research and Analysis MethodsModel OrganismsProtein Domainsddc:570GeneticsAnimalsMuscle SkeletalAlleleslcsh:REmbryosUbiquitinationOrganismsBiology and Life SciencesProteinsPupaeInvertebratesGenetic LociFlight AnimalMutationlcsh:QCarrier ProteinsDevelopmental Biology
researchProduct