Search results for "Pst-group"

showing 7 items of 7 documents

On a class of supersoluble groups

2014

A subgroup H of a finite group G is said to be S-semipermutable in G if H permutes with every Sylow q-subgroup of G for all primes q not dividing |H|. A finite group G is an MS-group if the maximal subgroups of all the Sylow subgroups of G are S-semipermutable in G. The aim of the present paper is to characterise the finite MS-groups.

Class (set theory)Finite groupGeneral MathematicsSylow theoremsGrups Teoria deAlgebraCombinatoricsBT-groupMS-groupÀlgebraAlgebra over a fieldFinite groupMATEMATICA APLICADASoluble PST-groupT0-groupMathematics
researchProduct

Some classes of finite groups and mutually permutable products

2008

[EN] This paper is devoted to the study of mutually permutable products of finite groups. A factorised group G=AB is said to be a mutually permutable product of its factors A and B when each factor permutes with every subgroup of the other factor. We prove that mutually permutable products of Y-groups (groups satisfying a converse of Lagrange's theorem) and SC-groups (groups whose chief factors are simple) are SC-groups, by means of a local version. Next we show that the product of pairwise mutually permutable Y-groups is supersoluble. Finally, we give a local version of the result stating that when a mutually permutable product of two groups is a PST-group (that is, a group in which every …

Pst-groupFinite groupMathematics::CombinatoricsAlgebra and Number TheoryY-groupGrups Teoria deSc-groupAlgebraMathematics::Group TheoryPermutabilityMutually permutable productÀlgebraPermutable primeFinite groupAlgebra over a fieldMATEMATICA APLICADAMathematicsJournal of Algebra
researchProduct

Primitive subgroups and PST-groups

2014

AbstractAll groups considered in this paper are finite. A subgroup $H$ of a group $G$ is called a primitive subgroup if it is a proper subgroup in the intersection of all subgroups of $G$ containing $H$ as a proper subgroup. He et al. [‘A note on primitive subgroups of finite groups’, Commun. Korean Math. Soc. 28(1) (2013), 55–62] proved that every primitive subgroup of $G$ has index a power of a prime if and only if $G/ \Phi (G)$ is a solvable PST-group. Let $\mathfrak{X}$ denote the class of groups $G$ all of whose primitive subgroups have prime power index. It is established here that a group $G$ is a solvable PST-group if and only if every subgroup of $G$ is an $\mathfrak{X}$-group.

Class (set theory)Group (mathematics)General MathematicsGrups Teoria deFinite groupsT_0-groupsPrime (order theory)CombinatoricsMathematics::Group TheorySubgroupPrimitive subgroupsSolvable PST-groupsÀlgebraAlgebra over a fieldMATEMATICA APLICADAPrime powerMathematics
researchProduct

On self-normalising subgroups of finite groups

2010

[EN] The aim of this paper is to characterise the classes of groups in which every subnormal subgroup is normal, permutable, or S-permutable by the embedding of the subgroups (respectively, subgroups of prime power order) in their normal, permutable, or S-permutable closure, respectively.

Discrete mathematicsFinite groupPst-groupAlgebra and Number TheoryMathematics::CombinatoricsGrups Teoria deAlgebraMathematics::Group TheoryT-groupPt-groupT-groupPermutabilitySylow permutabilityÀlgebraAlgebra over a fieldFinite groupPermutable closureSubnormal closureMATEMATICA APLICADAGroup theoryMathematics
researchProduct

Algorithms for permutability in finite groups

2013

In this paper we describe some algorithms to identify permutable and Sylow-permutable subgroups of finite groups, Dedekind and Iwasawa finite groups, and finite T-groups (groups in which normality is transitive), PT-groups (groups in which permutability is transitive), and PST-groups (groups in which Sylow permutability is transitive). These algorithms have been implemented in a package for the computer algebra system GAP.

General MathematicsS-permutable subgroupIwasawa groups-permutable subgrouppermutable subgroupiwasawa groupdedekind grouppt-group20-04CombinatoricsMathematics::Group TheoryT-grouppst-groupT-groupQA1-93920d10MathematicsFinite groupDedekind groupMathematics::CombinatoricsalgorithmGroup (mathematics)Sylow theoremsGrups Teoria deDedekind groupAlgorithmt-groupPST-groupIwasawa groupfinite groupPermutable subgroup [Finite group]Classification of finite simple groupsCA-groupPT-groupÀlgebraFinite group: Permutable subgroupMATEMATICA APLICADAAlgorithm20d20MathematicsOpen Mathematics
researchProduct

Some local properties defining $T_0$-groups and related classes of groups

2016

[EN] We call G a Hall_X -group if there exists a normal nilpotent subgroup N of G for which G/N' is an X -group. We call G a T0 -group provided G/\Phi(G) is a T -group, that is, one in which normality is a transitive relation. We present several new local classes of groups which locally define Hall_X -groups and T_0 -groups where X ∈ {T , PT , PST }; the classes PT and PST denote, respectively, the classes of groups in which permutability and S-permutability are transitive relations.

PST-GroupFinite Solvable Group.Subnormal SubgroupT-GroupGrups Teoria deÀlgebraMATEMATICA APLICADA
researchProduct

On finite minimal non-nilpotent groups

2005

[EN] A critical group for a class of groups X is a minimal non-X-group. The critical groups are determined for various classes of finite groups. As a consequence, a classification of the minimal non-nilpotent groups (also called Schmidt groups) is given, together with a complete proof of Gol¿fand¿s theorem on maximal Schmidt groups.

Pure mathematicsFinite groupPst-groupMathematical societyApplied MathematicsGeneral MathematicsGrups Teoria deSchmidt groupSylow subgroupSylow-permutable subgroupAlgebraMinimal non-nilpotent groupNilpotentCritical groupÀlgebraAlgebra over a fieldFinite groupClass of finite groupsMATEMATICA APLICADACritical groupVolume (compression)Mathematics
researchProduct