Search results for "Pulsars"
showing 10 items of 68 documents
A newly discovered accreting pulsar in Terzan 5
2011
The 11 Hz accreting pulsar, IGR J17480-2446, was recently discovered in the globular cluster Terzan 5. The analisys of the Doppler shifts induced by the orbital motion reveals how the neutron star belongs to a ∼ 21.3 hr binary system with a companion star of 0.4-1.5 M. The X-ray pulsar spins up while accreting at an average rate of 1.48(2)×10−12 Hz s−1, in agreement with the accretion of disc matter angular momentum given the observed luminosity. From the presence of pulsations at different accretion rates we constrain the magnetic field to lie within ∼2×108 and ∼2×1010 G. From this estimate, the value of the spin period and of the observed spin-up rate, we associate this source with the st…
Binary evolution of PSR J1713+0747
2007
PSR J1713+0747 is a binary millisecond radio pulsar with a long orbital period (Porb ∼ 68 d) and a very low neutron star mass (M NS = 1.3 ± 0.2 M⊙). We simulate the evolution of this binary system with an accurate numerical code, which keeps into account both the evolution of the primary and of the whole binary system. We show that strong ejection of matter from the system is fundamental to obtain a mass at the end of the evolution that is within 1 - σ from the observed one, but propeller effects are almost negligible in such a system, where the accretion rate is always near to the Eddington limit. We show that there are indeed two mechanisms can account for the amount of mass loss from the…
Timing and spectral changes of the Be X-ray transient EXO 0531-6609.2 through high and low state
2004
We report on spectral and timing analysis of BeppoSAX data of the 13.6 s period transient X-ray pulsar EXO 0531-6609.2. Observations were carried out in March 1997 and October 1998, catching the source during a high and a low emission state, respectively. Correspondingly, the X-ray luminosity is found at a level of 4.2x10^37 erg/s and 1.5x10^36 erg/s in the two states. In the high state the X-ray emission in the energy range 1-100 keV is well fitted by an absorbed power-law with photon index Gamma ~1.7 plus a blackbody component with a characteristic temperature of ~3.5 keV. Moreover, we find an evidence of an iron emission at ~6.8 keV, typical feature in this class of sources but never rev…
BeppoSAX serendipitous discovery of the X-ray pulsar SAX J1802.7-2017
2003
We report on the serendipitous discovery of a new X-ray source, SAX J1802.7-2017, ~22' away from the bright X-ray source GX 9+1, during a BeppoSAX observation of the latter source on 2001 September 16-20. SAX J1802.7-2017 remained undetected in the first 50 ks of observation; the source count rate in the following ~300 ks ranged between 0.04 c/s and 0.28 c/s, corresponding to an averaged 0.1-10 keV flux of 3.6 10^{-11} ergs cm^{-2} s^{-1}. We performed a timing analysis and found that SAX J1802.7-2017 has a pulse period of 139.612 s, a projected semimajor axis of a_x sin i ~ 70 lt-s, an orbital period of ~4.6 days, and a mass function f(M) ~ 17 Msun. The new source is thus an accreting X-ra…
The different fates of a low-mass X-ray binary - I. Conservative mass transfer
2003
We study the evolution of a low mass x-ray binary coupling a binary stellar evolution code with a general relativistic code that describes the behavior of the neutron star. We assume the neutron star to be low--magnetized (B~10^8 G). In the systems investigated in this paper, our computations show that during the binary evolution the companion transfers as much as 1 solar mass to the neutron star, with an accretion rate of 10^-9 solar masses/yr. This is sufficient to keep the inner rim of the accretion disc in contact with the neutron star surface, thus preventing the onset of a propeller phase capable of ejecting a significant fraction of the matter transferred by the companion. We find th…
High-Energy pulse profile of the Transient X-ray Pulsar SAX J2103.5+4545
2005
In two recent INTEGRAL papers, Lutovinov et al. (2003) and Blay et al. (2004) report a timing and spectral analysis of the transient Be/X-ray pulsar SAX J2103.5+4545 at high energies (5--200 keV). In this work we present for the first time a study of the pulse profile at energies above 20 keV using INTEGRAL data. The spin-pulse profile shows a prominent (with a duty cycle of 14%) and broad (with a FWHM of ~ 51 s) peak and a secondary peak which becomes more evident above 20 keV. The pulsed fraction increases with energy from ~ 45% at 5--40 keV to ~ 80% at 40--80 keV. The morphology of the pulse profile also changes as a function of energy, consistent with variations in the spectral componen…
Accreting Pulsars: Mixing-up Accretion Phases in Transitional Systems
2018
In the last 20 years our understanding of the millisecond pulsar population changed dramatically. Thanks to the large effective area and good time resolution of the NASA X-ray observatory Rossi X-ray Timing Explorer, we discovered that neutron stars in Low Mass X-ray Binaries (LMXBs) spins at frequencies between 200 and 750 Hz, and indirectly confirmed the recycling scenario, according to which neutron stars are spun up to millisecond periods during the LMXB-phase. In the meantime, the continuous discovery of rotation-powered millisecond pulsars in binary systems in the radio and gamma-ray band (mainly with the Fermi Large Area Telescope) allowed us to classify these sources into two "spide…
Measuring the spin up of the Accreting Millisecond Pulsar XTE J1751-305
2007
We perform a timing analysis on RXTE data of the accreting millisecond pulsar XTE J1751-305 observed during the April 2002 outburst. After having corrected for Doppler effects on the pulse phases due to the orbital motion of the source, we performed a timing analysis on the phase delays, which gives, for the first time for this source, an estimate of the average spin frequency derivative = (3.7 +/- 1.0)E-13 Hz/s. We discuss the torque resulting from the spin-up of the neutron star deriving a dynamical estimate of the mass accretion rate and comparing it with the one obtained from X-ray flux. Constraints on the distance to the source are discussed, leading to a lower limit of \sim 6.7 kpc.
A relativistically broadened iron line from an Accreting Millisecond Pulsar
2010
The capabilities of XMM-Newton have been fully exploited to detect a broadened iron Kα emission line from the 2.5 ms Accreting Millisecond Pulsar, SAX J1808.4-3658. The energy of the transition is compatible with fluorescence from neutral/lowly ionized iron. The observed large width (FWHM more than 1 keV) can be explained through Doppler and relativistic broadening from the inner rings of an accretion disc close to the NS. From a fit of the line shape with a diskline model we obtain an estimate of the inner disc radius of 18.0-5.6+7.6km for a 1.4 M⊙ neutron star. The disc is therefore truncated inside the corotation radius (31 km for SAX J1808.4-3658), in agreement with the observation of c…
Timing of the Accreting Millisecond Pulsar XTE J1814-338
2006
We present a precise timing analysis of the accreting millisecond pulsar XTE J1814-338 during its 2003 outburst, observed by RXTE. A full orbital solution is given for the first time; Doppler effects induced by the motion of the source in the binary system were corrected, leading to a refined estimate of the orbital period, P_orb=15388.7229(2)s, and of the projected semimajor axis, a sini/c= 390.633(9) lt-ms. We could then investigate the spin behaviour of the accreting compact object during the outburst. We report here a refined value of the spin frequency (nu=314.35610879(1) Hz) and the first estimate of the spin frequency derivative of this source while accreting (nu^dot=(-6.7 +/- 0.7) 1…