Search results for "Pyramidal cell"

showing 10 items of 51 documents

Functional hypoxia drives neuroplasticity and neurogenesis via brain erythropoietin.

2020

Erythropoietin (EPO), named after its role in hematopoiesis, is also expressed in mammalian brain. In clinical settings, recombinant EPO treatment has revealed a remarkable improvement of cognition, but underlying mechanisms have remained obscure. Here, we show with a novel line of reporter mice that cognitive challenge induces local/endogenous hypoxia in hippocampal pyramidal neurons, hence enhancing expression of EPO and EPO receptor (EPOR). High-dose EPO administration, amplifying auto/paracrine EPO/EPOR signaling, prompts the emergence of new CA1 neurons and enhanced dendritic spine densities. Single-cell sequencing reveals rapid increase in newly differentiating neurons. Importantly, i…

0301 basic medicineMaleDendritic spineGeneral Physics and AstronomyHippocampal formationVARIANTSADULT NEUROGENESIS0302 clinical medicineCognitionhemic and lymphatic diseasesReceptors ErythropoietinHypoxialcsh:ScienceNEURONSMultidisciplinaryNeuronal PlasticityPyramidal CellsNeurogenesisQBrainCell DifferentiationHEMATOPOIETIC PROGENITOR CELLSFemalemedicine.symptomProto-Oncogene Proteins c-fosmedicine.drugEXPRESSIONScienceDendritic SpinesNeurogenesisModels NeurologicalBiologyMotor ActivityGeneral Biochemistry Genetics and Molecular BiologyArticle03 medical and health sciencesParacrine signallingPhysical Conditioning AnimalNeuroplasticitymedicineAnimalsHumansErythropoietinMEMORYCognitive neuroscienceGeneral ChemistryHypoxia (medical)RECOMBINANT-HUMAN-ERYTHROPOIETINCellular neuroscienceErythropoietin receptorMice Inbred C57BLMICE030104 developmental biologyErythropoietinPhysical EnduranceIDENTITYlcsh:QTranscriptomeNeuroscience030217 neurology & neurosurgeryGene Deletion
researchProduct

Monoclonal antibodies SMI 311 and SMI 312 as tools to investigate the maturation of nerve cells and axonal patterns in human fetal brain

1998

Neurofilaments, which are exclusively found in nerve cells, are one of the earliest recognizable features of the maturing nervous system. The differential distribution of neurofilament proteins in varying degrees of phosphorylation within a neuron provides the possibility of selectively demonstrating either somata and dendrites or axons. Non-phosphorylated neurofilaments typical of somata and dendrites can be visualized with the aid of monoclonal antibody SMI 311, whereas antibody SMI 312 is directed against highly phosphorylated axonal epitopes of neurofilaments. The maturation of neuronal types, the development of area-specific axonal networks, and the gradients of maturation can thus be …

Nervous systemHistologyNeurofilamentmedicine.drug_classeducationImmunocytochemistryGolgi ApparatusGestational AgeBiologyMonoclonal antibodyPathology and Forensic MedicineEpitopeschemistry.chemical_compoundNeurofilament ProteinsmedicineHumansParaformaldehydeNeuronsPyramidal CellsfungiInfant NewbornAntibodies MonoclonalBrainAbortion InducedDendritesCell BiologyImmunohistochemistryAxonsmedicine.anatomical_structurenervous systemchemistryImmunohistochemistryNeuronNeuroscienceImmunostainingCell and Tissue Research
researchProduct

An update to Hippocampome.org by integrating single-cell phenotypes with circuit function in vivo.

2021

Understanding brain operation demands linking basic behavioral traits to cell-type specific dynamics of different brain-wide subcircuits. This requires a system to classify the basic operational modes of neurons and circuits. Single-cell phenotyping of firing behavior during ongoing oscillations in vivo has provided a large body of evidence on entorhinal–hippocampal function, but data are dispersed and diverse. Here, we mined literature to search for information regarding the phase-timing dynamics of over 100 hippocampal/entorhinal neuron types defined in Hippocampome.org. We identified missing and unresolved pieces of knowledge (e.g., the preferred theta phase for a specific neuron type) a…

DYNAMICSGABAERGIC INTERNEURONPhysiologyAction PotentialsSocial SciencesHippocampal formationHippocampusNeuron typesBehavioral traitsMice0302 clinical medicineAnimal CellsMedicine and Health SciencesEntorhinal CortexPsychologyNETWORKBiology (General)Function (engineering)media_commonNeurons0303 health sciencesPHYSIOLOGICAL-PROPERTIESGeneral NeurosciencePyramidal CellsMethods and ResourcesBrainPhenotypeMOSSY CELLS3. Good healthElectrophysiologyPhenotypeAnatomyCellular TypesGeneral Agricultural and Biological SciencesGanglion CellsHeuristic (computer science)QH301-705.5media_common.quotation_subjectNeurophysiologyBiologyMembrane PotentialGeneral Biochemistry Genetics and Molecular Biology03 medical and health sciencesAnimalsin vivo -menetelmähippokampus030304 developmental biologyBehaviorNeuron typeGeneral Immunology and MicrobiologyGranule CellsTHETA OSCILLATIONShermoverkot (biologia)Biology and Life SciencesCell BiologyNeuronal DendritesSILICON PROBESRatshermosolutBrain stateCellular Neuroscience1182 Biochemistry cell and molecular biologyfenotyyppi3111 BiomedicineNeuroscience030217 neurology & neurosurgeryNeurosciencePLoS biology
researchProduct

Immunohistochemical analysis of KCNQ3 potassium channels in mouse brain.

2005

KCNQ-type potassium channels generate the so-called M-current regulating excitability in many neurons. Mutations in KCNQ2/KCNQ3 channels can cause benign familial neonatal convulsions (BFNC). We describe the immunohistochemical staining of adult and developing mouse brain using an antibody directed against the N-terminus of KCNQ3 channels (KCNQ3N). A widespread KCNQ3N immunoreactivity predominantly of neuropil but also of somata was detected in different regions of the adult mouse brain, in particular in the hippocampus, cortex, thalamus and cerebellum. This staining pattern appeared gradually and became more intense during development. In the pyramidal cell layer of the hippocampus, the im…

medicine.medical_specialtyCerebellumPathologyCentral nervous systemThalamusBlotting WesternHippocampusBiologyKCNQ3 Potassium ChannelMiceCortex (anatomy)Internal medicinemedicineNeuropilAnimalsGeneral NeuroscienceBrainGene Expression Regulation DevelopmentalImmunohistochemistryPotassium channelMice Inbred C57BLEndocrinologymedicine.anatomical_structureParvalbuminsnervous systemAnimals Newbornsense organsPyramidal cellNeuroscience letters
researchProduct

The TrkB agonist 7,8-dihydroxyflavone changes the structural dynamics of neocortical pyramidal neurons and improves object recognition in mice

2018

This is a pre-print of an article published in Brain Structure and Function. The final authenticated version is available online at: https://doi.org/10.1007/s00429-018-1637-x. BDNF and its receptor TrkB have important roles in neurodevelopment, neural plasticity, learning, and memory. Alterations in TrkB expression have been described in different CNS disorders. Therefore, drugs interacting with TrkB, specially agonists, are promising therapeutic tools. Among them, the recently described 7,8-dihydroxyflavone (DHF), an orally bioactive compound, has been successfully tested in animal models of these diseases. Recent studies have shown the influence of this drug on the structure of pyramidal …

0301 basic medicineMaleDendritic spineTrkB receptorNeocortexTropomyosin receptor kinase B78-Dihydroxyflavoneaxonal dynamicsMice0302 clinical medicineReceptorMembrane GlycoproteinsGeneral NeurosciencePyramidal CellsProtein-Tyrosine Kinases2-Photonbarrel cortexFemaleMicrogliaAnatomyAgonistHistologymedicine.drug_classDendritic SpinesMice TransgenicBiologyspine dynamicsrecognition memory03 medical and health sciencesBacterial ProteinsNeuroplasticitymedicinepyramidal neuronAnimalsMaze LearningParenchymal TissueRecognition memoryAnalysis of VarianceRecognition PsychologyBarrel cortexFlavonesAxonsLuminescent Proteins030104 developmental biologynervous systemAstrocytesen passant boutonsThy-1 AntigensNeuroscience030217 neurology & neurosurgery
researchProduct

Most hippocampal CA1 pyramidal cells in rabbits increase firing during awake sharp-wave ripples and some do so in response to external stimulation an…

2020

Hippocampus forms neural representations of real-life events including multimodal information of spatial and temporal context. These representations, i.e. organized sequences of neuronal firing are repeated during following rest and sleep, especially when so-called sharp-wave ripples (SPW-Rs) characterize hippocampal local-field potentials. This SPW-R –related replay is thought to underlie memory consolidation. Here, we set out to explore how hippocampal CA1 pyramidal cells respond to the conditioned stimulus during trace eyeblink conditioning and how these responses manifest during SPW-Rs in awake adult female New Zealand White rabbits. Based on reports in rodents, we expected SPW-Rs to ta…

hippocampusPhysiologyConditioning Classicalclassical conditioningHippocampusStimulationHippocampal formation03 medical and health sciences0302 clinical medicinemedicineAnimalspyramidisoluthippokampusTheta RhythmCA1 Region Hippocampalmuisti (kognitio)030304 developmental biologypyramidal cell0303 health sciencesBehavior AnimalBlinkingChemistrymusculoskeletal neural and ocular physiologyGeneral NeuroscienceCa1 pyramidal neuronPyramidal CellsClassical conditioningneurotieteetBrain Wavessharp-wave ripplehermosolutehdollistuminenmedicine.anatomical_structurenervous systemEyeblink conditioningthetaFemaleElectrocorticographyRabbitsPyramidal cellNeuroscienceSharp wave030217 neurology & neurosurgeryJournal of neurophysiology
researchProduct

On a set of data for the membrane potential in a neuron

2006

We consider a set of data where the membrane potential in a pyramidal neuron is measured almost continuously in time, under varying experimental conditions. We use nonparametric estimates for the diffusion coefficient and the drift in view to contribute to the discussion which type of diffusion process is suitable to model the membrane potential in a neuron (more exactly: in a particular type of neuron under particular experimental conditions).

Statistics and ProbabilityModels NeurologicalNeural ConductionAction PotentialsTetrodotoxinType (model theory)Statistics NonparametricGeneral Biochemistry Genetics and Molecular BiologyMembrane PotentialsSet (abstract data type)MiceStatisticsAnimalsDiffusion (business)MathematicsCerebral CortexNeuronsMembrane potentialStochastic ProcessesQuantitative Biology::Neurons and CognitionGeneral Immunology and MicrobiologyStochastic processPyramidal CellsApplied MathematicsNonparametric statisticsGeneral MedicineElectrophysiologyElectrophysiologynervous systemDiffusion processModeling and SimulationPotassiumGeneral Agricultural and Biological SciencesBiological systemAlgorithmsMathematical Biosciences
researchProduct

The evolutionary history and tissue mapping of GPR123: specific CNS expression pattern predominantly in thalamic nuclei and regions containing large …

2007

The Adhesion family of G protein-coupled receptors (GPCRs) includes 33 receptors and is the second largest GPCR family. Most of these proteins are still orphans and fairly little is known of their tissue distribution and evolutionary context. We report the evolutionary history of the Adhesion family protein GPR123 as well as mapping of GPR123 mRNA expression in mouse and rat using in situ hybridization and real-time PCR, respectively. GPR123 was found to be well conserved within the vertebrate lineage, especially within the transmembrane regions and in the distal part of the cytoplasmic tail, containing a potential PDZ binding domain. The real-time PCR data indicates that GPR123 is predomin…

Central Nervous SystemMaleModels MolecularNeuronal signal transductionPDZ domainGene ExpressionContext (language use)In situ hybridizationBiologyBiochemistryReceptors G-Protein-CoupledMiceCellular and Molecular NeuroscienceAnimalsHumansTissue DistributionRNA MessengerNeural Cell Adhesion MoleculesIn Situ HybridizationPhylogenyG protein-coupled receptorReverse Transcriptase Polymerase Chain ReactionPyramidal CellsSubiculumRatsCell biologySignal transductionSequence AlignmentNeuroscienceBinding domainJournal of Neurochemistry
researchProduct

Multimodal determinants of phase-locked dynamics across deep-superficial hippocampal sublayers during theta oscillations

2020

Theta oscillations play a major role in temporarily defining the hippocampal rate code by translating behavioral sequences into neuronal representations. However, mechanisms constraining phase timing and cell-type-specific phase preference are unknown. Here, we employ computational models tuned with evolutionary algorithms to evaluate phase preference of individual CA1 pyramidal cells recorded in mice and rats not engaged in any particular memory task. We applied unbiased and hypothesis-free approaches to identify effects of intrinsic and synaptic factors, as well as cell morphology, in determining phase preference. We found that perisomatic inhibition delivered by complementary populations…

0301 basic medicineMaleneural circuits.Patch-Clamp TechniquesGeneral Physics and AstronomyAction PotentialsHippocampal formationCell morphologySettore BIO/09 - Fisiologia0302 clinical medicineTheta Rhythmlcsh:ScienceBiophysical modelPhysicsNeurons0303 health sciencesComputational modelMultidisciplinaryBiología molecularPyramidal CellsQDynamics (mechanics)Theta oscillationsFemaleAlgorithmsScienceNeurocienciasModels NeurologicalPhase (waves)Mice TransgenicNeural circuitsGeneral Biochemistry Genetics and Molecular BiologyArticle03 medical and health sciencesGlutamatergicMemory taskAnimalsComputer SimulationRats WistarCA1 Region Hippocampal030304 developmental biologyGeneral ChemistryMice Inbred C57BLKinetics030104 developmental biologySynapseslcsh:QNeuroscience030217 neurology & neurosurgeryBiophysical models
researchProduct

TRPV1 channels in nitric oxide-mediated signalling: insight on excitatory transmission in rat CA1 pyramidal neurons

2022

Nitric oxide (NO) is a fascinating signalling molecule implicated in a plethora of biological functions, especially at the synaptic level. Exploring neurotransmission in the hippocampus could be instrumental in the individuation of putative targets for nitric-oxide mediated neuromodulation, especially in terms of the potential repercussions on fundamental processes i.e. synaptic plasticity and excitability-related phenomena. Among these targets, endovanilloid signalling constitutes an object of study since Transient Receptors Vanilloid type 1 (TRPV1) channels possess a NO-sensitive gate modulating its activation. Also, NO has been referred to as a mediator for numerous endocannabinoid effec…

Pyramidal CellsTRPV Cation ChannelsNitric oxideNitric Oxide Synthase Type IAnandamideLigandsBiochemistrySynaptic TransmissionCA1RatsTRPV1mEPSCPhysiology (medical)Animals[SDV.NEU]Life Sciences [q-bio]/Neurons and Cognition [q-bio.NC]CapsaicinPatch-clampEndocannabinoids
researchProduct