Search results for "QC770"

showing 10 items of 270 documents

Novel mechanism for primordial perturbations in minimal extensions of the Standard Model

2020

Abstract We demonstrate that light spectator fields in their equilibrium can source sizeable CMB anisotropies through modulated reheating even in the absence of direct couplings to the inflaton. The effect arises when the phase space of the inflaton decay is modulated by the spectator which generates masses for the decay products. We call the mechanism indirect modulation and using the stochastic eigenvalue expansion show that it can source perturbations even four orders of magnitude larger than the observed amplitude. Importantly, the indirect mechanism is present in the Standard Model extended with right- handed neutrinos. For a minimally coupled Higgs boson this leads to a novel lower bo…

Nuclear and High Energy PhysicsParticle physicsHiggs Physicshiukkasfysiikka114 Physical sciences01 natural sciencesUpper and lower boundsPhysics Particles & FieldsStandard Model0103 physical scienceslcsh:Nuclear and particle physics. Atomic energy. Radioactivity010306 general physicscosmology of theories beyond the SM0206 Quantum PhysicsPhysicsScience & Technology0105 Mathematical Physics010308 nuclear & particles physicsHiggsin bosoniPhysicshep-thHigh Energy Physics::PhenomenologyHiggs physicshep-phInflatonCosmology of Theories beyond the SMNuclear & Particles PhysicsAmplitudeOrders of magnitude (time)Phase spacePhysical Sciences0202 Atomic Molecular Nuclear Particle and Plasma Physicsastro-ph.COHiggs bosonlcsh:QC770-798NeutrinoJournal of High Energy Physics
researchProduct

On the validity of perturbative studies of the electroweak phase transition in the Two Higgs Doublet model

2019

Abstract Making use of a dimensionally-reduced effective theory at high temperature, we perform a nonperturbative study of the electroweak phase transition in the Two Higgs Doublet model. We focus on two phenomenologically allowed points in the parameter space, carrying out dynamical lattice simulations to determine the equilibrium properties of the transition. We discuss the shortcomings of conventional perturbative approaches based on the resummed effective potential — regarding the insufficient handling of infrared resummation but also the need to account for corrections beyond 1-loop order in the presence of large scalar couplings — and demonstrate that greater accuracy can be achieved …

Nuclear and High Energy PhysicsParticle physicsPhase transition530 PhysicsSTANDARD MODELFOS: Physical sciencesSECTORParameter space114 Physical sciences3D PHYSICS01 natural scienceslattice quantum field theoryCOSMOLOGY OF THEORIES BEYOND THE SMTwo-Higgs-doublet modelHigh Energy Physics - LatticeHigh Energy Physics - Phenomenology (hep-ph)Lattice (order)BARYON ASYMMETRY0103 physical sciencesEffective field theoryeffective field theorieslcsh:Nuclear and particle physics. Atomic energy. RadioactivityResummation010306 general physicscosmology of theories beyond the SMLATTICE QUANTUM FIELD THEORYPhysicsPP COLLISIONS010308 nuclear & particles physicsHigh Energy Physics - Lattice (hep-lat)High Energy Physics::PhenomenologyElectroweak interactionBOSONTHERMAL FIELD THEORYBARYOGENESISthermal field theoryLATTICEHigh Energy Physics - PhenomenologyCP-VIOLATIONTEMPERATURE DIMENSIONAL REDUCTIONlcsh:QC770-798EFFECTIVE FIELD THEORIES
researchProduct

Exclusive heavy vector meson electroproduction to NLO in collinear factorisation

2021

We compute the exclusive electroproduction, $\gamma^* p \rightarrow V p$, of heavy quarkonia $V$ to NLO in the collinear factorisation scheme, which has been formally proven for this process. The inclusion of an off-shell virtuality $Q^2$ carried by the photon extends the photoproduction phase space of the exclusive heavy quarkonia observable to electroproduction kinematics. This process is relevant for diffractive scattering at HERA and the upcoming EIC, as well as at the proposed LHeC and FCC.

Nuclear and High Energy PhysicsParticle physicsPhotonNuclear TheoryFOS: Physical sciencesQC770-798hiukkasfysiikka01 natural sciences114 Physical sciencesHigh Energy Physics - Phenomenology (hep-ph)FactorizationNuclear and particle physics. Atomic energy. RadioactivityNLO Computations0103 physical sciencesVector mesonNuclear Experiment010306 general physicsPhysics010308 nuclear & particles physicsScatteringHigh Energy Physics::PhenomenologyObservableHERAQCD PhenomenologyHigh Energy Physics - PhenomenologyPhase spaceHigh Energy Physics::Experiment
researchProduct

Minimal flavor violation in the see-saw portal

2020

We consider an extension of the Standard Model with two singlet leptons, with masses in the electroweak range, that induce neutrino masses via the see-saw mechanism, plus a generic new physics sector at a higher scale, $\Lambda$. We apply the minimal flavor violation (MFV) principle to the corresponding Effective Field Theory ($\nu$SMEFT) valid at energy scales $E \ll \Lambda$. We identify the irreducible sources of lepton flavor and lepton number violation at the renormalizable level, and apply the MFV ans\"atz to derive the scaling of the Wilson coefficients of the $\nu$SMEFT operators up to dimension six. We highlight the most important phenomenological consequences of this hypothesis in…

Nuclear and High Energy PhysicsParticle physicsPhysics beyond the Standard ModelFOS: Physical sciences01 natural sciencesHigh Energy Physics - Phenomenology (hep-ph)0103 physical sciencesEffective field theoryNeutrino Physicslcsh:Nuclear and particle physics. Atomic energy. Radioactivity010306 general physicsPhysics010308 nuclear & particles physicsElectroweak interactionHigh Energy Physics::Phenomenologybeyond standard model; CP violation; neutrino physicsLepton numberStandard Model (mathematical formulation)High Energy Physics - PhenomenologyCP violationBeyond Standard ModelHiggs bosonCP violationlcsh:QC770-798High Energy Physics::ExperimentNeutrinoJournal of High Energy Physics
researchProduct

Probes of the Standard Model effective field theory extended with a right-handed neutrino

2019

If neutrinos are Dirac particles and, as suggested by the so far null LHC results, any new physics lies at energies well above the electroweak scale, the Standard Model effective field theory has to be extended with operators involving the right-handed neutrinos. In this paper, we study this effective field theory and set constraints on the different dimension-six interactions. To that aim, we use LHC searches for associated production of light (and tau) leptons with missing energy, monojet searches, as well as pion and tau decays. Our bounds are generally above the TeV for order one couplings. One particular exception is given by operators involving top quarks. These provide new signals in…

Nuclear and High Energy PhysicsParticle physicsPhysics beyond the Standard ModelFOS: Physical sciencesComputer Science::Digital Libraries01 natural sciencesHigh Energy Physics - ExperimentStandard ModelHigh Energy Physics - Experiment (hep-ex)High Energy Physics - Phenomenology (hep-ph)0103 physical sciencesEffective field theoryNeutrino Physicslcsh:Nuclear and particle physics. Atomic energy. Radioactivity010306 general physicsPhysicsLarge Hadron ColliderMissing energy010308 nuclear & particles physicsHigh Energy Physics::PhenomenologyEffective Field TheoriesNeutrino physicsHigh Energy Physics - PhenomenologyBeyond Standard ModelComputer Science::Mathematical Softwarelcsh:QC770-798High Energy Physics::ExperimentNeutrinoElectroweak scaleLeptonJournal of High Energy Physics
researchProduct

Measuring the top energy asymmetry at the LHC: QCD and SMEFT interpretations

2020

The energy asymmetry in top-antitop-jet production is an observable of the top charge asymmetry designed for the LHC. We perform a realistic analysis in the boosted kinematic regime, including effects of the parton shower, hadronization and expected experimental uncertainties. Our predictions at particle level show that the energy asymmetry in the Standard Model can be measured with a significance of $3\sigma$ during Run 3, and with more than $5\sigma$ significance at the HL-LHC. Beyond the Standard Model the energy asymmetry is a sensitive probe of new physics with couplings to top quarks. In the framework of the Standard Model Effective Field Theory, we show that the sensitivity of the en…

Nuclear and High Energy PhysicsParticle physicsPhysics beyond the Standard Modelmedia_common.quotation_subjectFOS: Physical sciences01 natural sciences7. Clean energyAsymmetryStandard ModelHigh Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)High Energy Physics - Phenomenology (hep-ph)Hadron-Hadron scattering (experiments)0103 physical sciencesEffective field theorylcsh:Nuclear and particle physics. Atomic energy. Radioactivity010306 general physicsParton showermedia_commonParticle Physics - PhenomenologyPhysicsQuantum chromodynamicsLarge Hadron Collider010308 nuclear & particles physicshep-exHigh Energy Physics::Phenomenologyhep-phQCDHadronizationHigh Energy Physics - PhenomenologyTop physicsBeyond Standard Modellcsh:QC770-798High Energy Physics::ExperimentParticle Physics - Experiment
researchProduct

Scalable haloscopes for axion dark matter detection in the 30$\mu$eV range with RADES

2020

RADES (Relic Axion Detector Exploratory Setup) is a project with the goal of directly searching for axion dark matter above the 30μeV scale employing custom-made microwave filters in magnetic dipole fields. Currently RADES is taking data at the LHC dipole of the CAST experiment. In the long term, the RADES cavities are envisioned to take data in the BabyIAXO magnet. In this article we report on the modelling, building and characterisation of an optimised microwave-filter design with alternating irises that exploits maximal coupling to axions while being scalable in length without suffering from mode-mixing. We develop the mathematical formalism and theoretical study which justifies the perf…

Nuclear and High Energy PhysicsParticle physicsPhysics::Instrumentation and DetectorsDark matter7. Clean energy01 natural sciencesHigh Energy Physics - Experiment0103 physical sciencesDark Matter and Double Beta Decay (experiments)Dark matterlcsh:Nuclear and particle physics. Atomic energy. Radioactivity010306 general physicsAxionParticle Physics - PhenomenologyCouplingPhysicsTeoría de la Señal y las ComunicacionesLarge Hadron Colliderhep-ex010308 nuclear & particles physicsDetectorhep-phDipoleHigh Energy Physics - PhenomenologyMagnetlcsh:QC770-79821 Astronomía y AstrofísicaMagnetic dipoleParticle Physics - Experiment
researchProduct

Multilepton dark matter signals

2020

The signatures of dark matter at the LHC commonly involve, in simplified scenarios, the production of a single particle plus large missing energy, from the undetected dark matter. However, in $Z'$-portal scenarios anomaly cancellation requires the presence of extra dark leptons in the dark sector. We investigate the signatures of the minimal scenarios of this kind, which involve cascade decays of the extra $Z'$ boson into the dark leptons, identifying a four-lepton signal as the most promising one. We estimate the sensitivity to this signal at the LHC, the high-luminosity LHC upgrade, a possible high-energy upgrade, as well as a future circular collider. For $Z'$ couplings compatible with c…

Nuclear and High Energy PhysicsParticle physicsPhysics::Instrumentation and DetectorsDark matterFOS: Physical sciencesAstrophysics::Cosmology and Extragalactic Astrophysics7. Clean energy01 natural sciencesFuture Circular ColliderHigh Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)High Energy Physics - Phenomenology (hep-ph)0103 physical scienceslcsh:Nuclear and particle physics. Atomic energy. Radioactivity010306 general physicsBosonPhysicsMissing energyLarge Hadron Collider010308 nuclear & particles physicsElectroweak interactionHigh Energy Physics::PhenomenologyHigh Energy Physics - PhenomenologyUpgradeGauge SymmetryBeyond Standard Modellcsh:QC770-798High Energy Physics::ExperimentLepton
researchProduct

The seesaw portal in testable models of neutrino masses

2017

A Standard Model extension with two Majorana neutrinos can explain the measured neutrino masses and mixings, and also account for the matter-antimatter asymmetry in a region of parameter space that could be testable in future experiments. The testability of the model relies to some extent on its minimality. In this paper we address the possibility that the model might be extended by extra generic new physics which we parametrize in terms of a low-energy effective theory. We consider the effects of the operators of the lowest dimensionality, $d=5$, and evaluate the upper bounds on the coefficients so that the predictions of the minimal model are robust. One of the operators gives a new produ…

Nuclear and High Energy PhysicsParticle physicsPhysics::Instrumentation and DetectorsPhysics beyond the Standard ModelFOS: Physical sciences01 natural sciencesMinimal modelHigh Energy Physics - Phenomenology (hep-ph)Seesaw molecular geometry0103 physical sciencesEffective field theoryNeutrino Physicslcsh:Nuclear and particle physics. Atomic energy. Radioactivity010306 general physicsParticle Physics - PhenomenologyPhysicsLarge Hadron Collider010308 nuclear & particles physicsHigh Energy Physics::Phenomenologyhep-phMAJORANAHigh Energy Physics - PhenomenologyBeyond Standard ModelHiggs bosonlcsh:QC770-798High Energy Physics::ExperimentNeutrinoJournal of High Energy Physics
researchProduct

Dynamical origin of the electroweak scale and the 125 GeV scalar

2015

We consider a fully dynamical origin for the masses of weak gauge bosons and heavy quarks of the Standard Model. Electroweak symmetry breaking and the gauge boson masses arise from new strong dynamics, which leads to the appearance of a composite scalar in the spectrum of excitations. In order to generate mass for the Standard Model fermions, we consider extended gauge dynamics, effectively represented by four fermion interactions at presently accessible energies. By systematically treating these interactions, we show that they lead to a large reduction of the mass of the scalar resonance. Therefore, interpreting the scalar as the recently observed 125 GeV state, implies that the mass origi…

Nuclear and High Energy PhysicsParticle physicsStandard ModelHigh Energy Physics::LatticeSTANDARD MODELFOS: Physical sciencesTechnicolorMASS114 Physical sciences01 natural sciencesSYMMETRY-BREAKINGHigh Energy Physics - Phenomenology (hep-ph)High Energy Physics - Lattice0103 physical sciencesbeyond-the-Standard-Modellcsh:Nuclear and particle physics. Atomic energy. Radioactivity010306 general physicsBosonPhysicsGauge bosonta114electroweak symmetry breaking010308 nuclear & particles physicsHigh Energy Physics - Lattice (hep-lat)Electroweak interactionHigh Energy Physics::PhenomenologyScalar (physics)BOSONHigh Energy Physics - PhenomenologyHiggs bosonmasslcsh:QC770-798LHCElectroweak scaleScalar fieldNuclear Physics B
researchProduct