Search results for "QUANTUM MECHANICS"
showing 10 items of 2468 documents
High‐nuclearity mixed‐valence magnetic clusters : A general solution of the double exchange problem
1996
We report here a general solution of the double‐exchange problem in the high‐nuclearity mixed valence systems containing arbitrary number P of the electrons delocalized over the network of N (P<N) localized spins. The developed approach is based on the successive (chainlike) spin‐coupling scheme and takes full advantage from the quantum angular momentum theory. In the framework of this approach the closed‐form analytical expressions are deduced for the matrix elements of the double exchange interaction, two‐electron transfer, and three‐center interaction that can be referred to as the potential exchange transfer. For the arbitrary nuclearity mixed‐valence systems the matrix elements of all …
Counterdiabatic vortex pump in spinor Bose-Einstein condensates
2017
Topological phase imprinting is a well-established technique for deterministic vortex creation in spinor Bose-Einstein condensates of alkali metal atoms. It was recently shown that counter-diabatic quantum control may accelerate vortex creation in comparison to the standard adiabatic protocol and suppress the atom loss due to nonadiabatic transitions. Here we apply this technique, assisted by an optical plug, for vortex pumping to theoretically show that sequential phase imprinting up to 20 cycles generates a vortex with a very large winding number. Our method significantly increases the fidelity of the pump for rapid pumping compared to the case without the counter-diabatic control, leadin…
Local Berry curvature signatures in dichroic angle-resolved photoelectron spectroscopy from two-dimensional materials
2020
Orbital polarization and Berry curvature signatures are mapped out by circular dichroism in angle-resolved photoemission.
Diffusion Acceleration in Randomly Switching Sawtooth Potential
2005
We investigate an overdamped Brownian motion in symmetric sawtooth periodic potential switched by Markovian dichotomous noise between two configurations. The two configurations differ each other by a translation of half of period. The calculation of the effective diffusion coefficient is reduced to the mean first‐passage time problem, and we obtain the exact expression valid for arbitrary mean rate of switchings and arbitrary intensity of white Gaussian noise. We find the area at parameters plane where acceleration of diffusion in comparison with the free diffusion case takes place.
Melnikov functions and Bautin ideal
2001
The computation of the number of limit cycles which appear in an analytic unfolding of planar vector fields is related to the decomposition of the displacement function of this unfolding in an ideal of functions in the parameter space, called the Ideal of Bautin. On the other hand, the asymptotic of the displacement function, for 1-parameter unfoldings of hamiltonian vector fields is given by Melnikov functions which are defined as the coefficients of Taylor expansion in the parameter. It is interesting to compare these two notions and to study if the general estimations of the number of limit cycles in terms of the Bautin ideal could be reduced to the computations of Melnikov functions for…
A quantum mechanics-molecular mechanics study of dissociative electron transfer : The methylchloride radical anion in aqueous solution
2002
The dissociative electron transfer reaction CH3Cl+e−→CH3•+Cl− in aqueous solution is studied by using a QM/MM method. In this work the quantum subsystem (a methylchloride molecule plus an electron) is described using density functional theory while the solvent (300 water molecules) is described using the TIP3P classical potential. By means of molecular dynamics simulations and the thermodynamic integration technique we obtained the potential of mean force (PMF) for the carbon–chlorine bond dissociation of the neutral and radical anion species. Combining these two free energy curves we found a quadratic dependence of the activation free energy on the reaction free energy in agreement with Ma…
Critical energy flux and mass in solvable theories of 2D dilaton gravity
1998
In this paper we address the issue of determining the semiclassical threshold for black hole formation in the context of a one-parameter family of theories which continuously interpolates between the RST and BPP models. We find that the results depend significantly on the initial static configuration of the spacetime geometry before the influx of matter is turned on. In some cases there is a critical energy density, given by the Hawking rate of evaporation, as well as a critical mass $m_{cr}$ (eventually vanishing). In others there is neither $m_{cr}$ nor a critical flux.
Revising the observable consequences of slow-roll inflation
2009
We study the generation of primordial perturbations in a (single-field) slow-roll inflationary Universe. In momentum space, these (Gaussian) perturbations are characterized by a zero mean and a nonzero variance Delta(2) (k, t). However, in position space the variance diverges in the ultraviolet. The requirement of a finite variance in position space forces one to regularize Delta(2) (k, t). This can (and should) be achieved by proper renormalization in an expanding Universe in a unique way. This affects the predicted scalar and tensorial power spectra (evaluated when the modes acquire classical properties) for wavelengths that today are at observable scales. As a consequence, the imprint of…
Dynamic transition to spontaneous scalarization in boson stars
2010
We show that the phenomenon of spontaneous scalarization predicted in neutron stars within the framework of scalar-tensor tensor theories of gravity, also takes place in boson stars without including a self-interaction term for the boson field (other than the mass term), contrary to what was claimed before. The analysis is performed in the physical (Jordan) frame and is based on a 3+1 decomposition of spacetime assuming spherical symmetry.
GW170817, General Relativistic Magnetohydrodynamic Simulations, and the Neutron Star Maximum Mass
2017
Recent numerical simulations in general relativistic magnetohydrodynamics (GRMHD) provide useful constraints for the interpretation of the GW170817 discovery. Combining the observed data with these simulations leads to a bound on the maximum mass of a cold, spherical neutron star (the TOV limit): ${M_{\rm max}^{\rm sph}}\lesssim 2.74/\beta$, where $\beta$ is the ratio of the maximum mass of a uniformly rotating neutron star (the supramassive limit) over the maximum mass of a nonrotating star. Causality arguments allow $\beta$ to be as high as $1.27$, while most realistic candidate equations of state predict $\beta$ to be closer to $1.2$, yielding ${M_{\rm max}^{\rm sph}}$ in the range $2.16…