Search results for "Quantum algebra"

showing 10 items of 117 documents

On the exponential growth of graded Capelli polynomials

2013

In a free superalgebra over a field of characteristic zero we consider the graded Capelli polynomials Cap M+1[Y,X] and Cap L+1[Z,X] alternating on M+1 even variables and L+1 odd variables, respectively. Here we compute the superexponent of the variety of superalgebras determinated by Cap M+1[Y,X] and Cap L+1[Z,X]. An essential tool in our computation is the generalized-six-square theorem proved in [3].

CombinatoricsSettore MAT/02 - AlgebraExponential growthMathematics::Quantum AlgebraGeneral MathematicsZero (complex analysis)algebras with pilynomial identities noncommutative invariant theory asymptotic equivalenceField (mathematics)Algebra over a fieldVariety (universal algebra)Mathematics::Representation TheorySuperalgebraMathematicsIsrael Journal of Mathematics
researchProduct

Conjugacy problem for braid groups and Garside groups

2003

We present a new algorithm to solve the conjugacy problem in Artin braid groups, which is faster than the one presented by Birman, Ko and Lee. This algorithm can be applied not only to braid groups, but to all Garside groups (which include finite type Artin groups and torus knot groups among others).

Conjugacy problemBraid group20F36Geometric topologyGarside groupsGroup Theory (math.GR)0102 computer and information sciencesAlgebraic topology01 natural sciencesTorus knotCombinatoricsMathematics - Geometric TopologyMathematics::Group TheoryMathematics::Quantum AlgebraFOS: MathematicsAlgebraic Topology (math.AT)Mathematics - Algebraic Topology0101 mathematics20F36; 20F10MathematicsSmall Gaussian groupsAlgebra and Number Theory010102 general mathematicsConjugacy problemBraid groupsGeometric Topology (math.GT)Braid theoryMathematics::Geometric TopologyArtin groups010201 computation theory & mathematicsArtin group20F10Mathematics - Group TheoryGroup theory
researchProduct

A natural and rigid model of quantum groups

1992

We introduce a natural (Frechet-Hopf) algebra A containing all generic Jimbo algebras U t (sl(2)) (as dense subalgebras). The Hopf structures on A extend (in a continuous way) the Hopf structures of generic U t (sl(2)). The Universal R-matrices converge in A\(\hat \otimes \)A. Using the (topological) dual of A, we recover the formalism of functions of noncommutative arguments. In addition, we show that all these Hopf structures on A are isomorphic (as bialgebras), and rigid in the category of bialgebras.

Discrete mathematicsFormalism (philosophy of mathematics)Pure mathematicsRigid modelQuantum groupMathematics::Quantum AlgebraMathematics::Rings and AlgebrasStatistical and Nonlinear PhysicsHopf algebraNoncommutative geometryQuantumMathematical PhysicsMathematicsLetters in Mathematical Physics
researchProduct

Polynomial identities on superalgebras: Classifying linear growth

2006

Abstract We classify, up to PI-equivalence, the superalgebras over a field of characteristic zero whose sequence of codimensions is linearly bounded. As a consequence we determine the linear functions describing the graded codimensions of a superalgebra.

Discrete mathematicsPolynomialPure mathematicsSequenceAlgebra and Number TheoryMathematics::Commutative AlgebraMathematics::Rings and AlgebrasZero (complex analysis)Field (mathematics)graded polynomial identity T_2-ideal graded codimensionsSuperalgebraSettore MAT/02 - AlgebraMathematics::Quantum AlgebraBounded functionMathematics::Representation TheoryLinear growthMathematicsJournal of Pure and Applied Algebra
researchProduct

A computational criterion for the Kac conjecture

2006

Abstract We give a criterion for the Kac conjecture asserting that the free term of the polynomial counting the absolutely indecomposable representations of a quiver over a finite field of given dimension coincides with the corresponding root multiplicity of the associated Kac–Moody algebra. Our criterion suits very well for computer tests.

Discrete mathematicsPure mathematicsAlgebra and Number TheoryConjectureQuiverMultiplicity (mathematics)16G20High Energy Physics::TheoryFinite fieldMathematics::Quantum AlgebraFOS: MathematicsRepresentation Theory (math.RT)Mathematics::Representation TheoryIndecomposable moduleMathematics - Representation TheoryMathematicsJournal of Algebra
researchProduct

Varieties of superalgebras of almost polynomial growth

2011

Abstract Let V gr be a variety of superalgebras and let c n gr ( V gr ) , n = 1 , 2 , …  , be its sequence of graded codimensions. Such a sequence is polynomially bounded if and only if V gr does not contain a list of five superalgebras consisting of a commutative superalgebra, the infinite dimensional Grassmann algebra and the algebra of 2 × 2 upper triangular matrices with trivial and natural Z 2 -gradings. In this paper we completely classify all subvarieties of the varieties generated by these five superalgebras, by giving a complete list of finite dimensional generating superalgebras.

Discrete mathematicsSequencePolynomialPure mathematicsAlgebra and Number TheoryMathematics::Rings and AlgebrasTriangular matrixGrowthPolynomial identitySuperalgebrasuperalgebra growthBounded functionMathematics::Quantum AlgebraVarietyVariety (universal algebra)Mathematics::Representation TheoryExterior algebraCommutative propertyMathematicsJournal of Algebra
researchProduct

The Virasoro Algebra

1989

In this chapter we shall study the Lie algebra Vect S1 of vector fields on a circle and some of its generalizations. The Lie algebra Vect S1 has a central extension, the Virasoro algebra. The representation theory of the Virasoro algebra is closely related to the representation theory of affine Lie algebras. In fact, through the Sugawara construction, to be defined below, a highest weight representation of an affine Lie algebra carries always a highest weight representation of the Virasoro algebra. All the irreducible highest weight representations of the Virasoro algebra are known and they can be exponentiated to representations of associated infinite-dimensional Lie groups. The representa…

Filtered algebraHigh Energy Physics::TheoryPure mathematicsMathematics::Quantum AlgebraCurrent algebraCellular algebraVirasoro algebraUniversal enveloping algebraWitt algebraAffine Lie algebraMathematicsSupersymmetry algebra
researchProduct

On operads, bimodules and analytic functors

2017

We develop further the theory of operads and analytic functors. In particular, we introduce a bicategory that has operads as 0-cells, operad bimodules as 1-cells and operad bimodule maps as 2-cells, and prove that this bicategory is cartesian closed. In order to obtain this result, we extend the theory of distributors and the formal theory of monads.

General Mathematics0102 computer and information sciences01 natural sciencesMathematics::Algebraic TopologyQuantitative Biology::Cell BehaviorMathematics::K-Theory and HomologyMathematics::Quantum AlgebraMathematics::Category Theory18D50 55P48 18D05 18C15FOS: MathematicsAlgebraic Topology (math.AT)Category Theory (math.CT)Mathematics - Algebraic Topology0101 mathematicsMathematicsFunctorOperad bimodule analytic functor bicategoryTheoryMathematics::Operator AlgebrasApplied Mathematics010102 general mathematicsOrder (ring theory)Mathematics - Category Theory16. Peace & justiceBicategoryAlgebraCartesian closed category010201 computation theory & mathematicsBimodule
researchProduct

Fundamental isomorphism theorems for quantum groups

2017

The lattice of subgroups of a group is the subject of numerous results revolving around the central theme of decomposing the group into "chunks" (subquotients) that can then be compared to one another in various ways. Examples of results in this class would be the Noether isomorphism theorems, Zassenhaus' butterfly lemma, the Schreier refinement theorem for subnormal series of subgroups, the Dedekind modularity law, and last but not least the Jordan-H\"older theorem. We discuss analogues of the above-mentioned results in the context of locally compact quantum groups and linearly reductive quantum groups. The nature of the two cases is different: the former is operator algebraic and the latt…

General MathematicsGroup Theory (math.GR)01 natural sciences0103 physical sciencesMathematics - Quantum AlgebraQuantum no-deleting theoremFOS: MathematicsQuantum Algebra (math.QA)Compact quantum groupLocally compact space0101 mathematicsOperator Algebras (math.OA)MathematicsZassenhaus lemmaLocally compact quantum group010102 general mathematicsMathematics - Operator AlgebrasFunctional Analysis (math.FA)AlgebraMathematics - Functional Analysis46L89 46L85 46L52 16T20 20G42Isomorphism theoremQuantum algorithmSchreier refinement theorem010307 mathematical physicsMathematics - Group Theory
researchProduct

Weight Systems from Feynman Diagrams

1996

We find that the overall UV divergences of a renormalizable field theory with trivalent vertices fulfil a four-term relation. They thus come close to establish a weight system. This provides a first explanation of the recent successful association of renormalization theory with knot theory.

High Energy Physics - TheoryAlgebra and Number TheoryAssociation (object-oriented programming)FOS: Physical sciencesMathematics::Geometric TopologyKnot theoryRenormalizationTheoretical physicssymbols.namesakeHigh Energy Physics - PhenomenologyHigh Energy Physics - Phenomenology (hep-ph)High Energy Physics - Theory (hep-th)Mathematics - Quantum AlgebrasymbolsFOS: MathematicsFeynman diagramQuantum Algebra (math.QA)Field theory (psychology)Relation (history of concept)Mathematics
researchProduct