Search results for "Quantum algebra"
showing 10 items of 117 documents
Universal cocycles and the graph complex action on homogeneous Poisson brackets by diffeomorphisms
2020
The graph complex acts on the spaces of Poisson bi-vectors $P$ by infinitesimal symmetries. We prove that whenever a Poisson structure is homogeneous, i.e. $P = L_{\vec{V}}(P)$ w.r.t. the Lie derivative along some vector field $\vec{V}$, but not quadratic (the coefficients of $P$ are not degree-two homogeneous polynomials), and whenever its velocity bi-vector $\dot{P}=Q(P)$, also homogeneous w.r.t. $\vec{V}$ by $L_{\vec{V}}(Q)=n\cdot Q$ whenever $Q(P)= Or(\gamma)(P^{\otimes^n})$ is obtained using the orientation morphism $Or$ from a graph cocycle $\gamma$ on $n$ vertices and $2n-2$ edges in each term, then the $1$-vector $\vec{X}=Or(\gamma)(\vec{V}\otimes P^{\otimes^{n-1}})$ is a Poisson co…
A Classification of Modular Functors via Factorization Homology
2022
Modular functors are traditionally defined as systems of projective representations of mapping class groups of surfaces that are compatible with gluing. They can formally be described as modular algebras over central extensions of the modular surface operad, with the values of the algebra lying in a suitable symmetric monoidal $(2,1)$-category $\mathcal{S}$ of linear categories. In this paper, we prove that modular functors in $\mathcal{S}$ are equivalent to self-dual balanced braided algebras $\mathcal{A}$ in $\mathcal{S}$ (a categorification of the notion of a commutative Frobenius algebra) for which a condition formulated in terms of factorization homology with coefficients in $\mathcal{…
The distinguished invertible object as ribbon dualizing object in the Drinfeld center
2022
We prove that the Drinfeld center $Z(\mathcal{C})$ of a pivotal finite tensor category $\mathcal{C}$ comes with the structure of a ribbon Grothendieck-Verdier category in the sense of Boyarchenko-Drinfeld. Phrased operadically, this makes $Z(\mathcal{C})$ into a cyclic algebra over the framed $E_2$-operad. The underlying object of the dualizing object is the distinguished invertible object of $\mathcal{C}$ appearing in the well-known Radford isomorphism of Etingof-Nikshych-Ostrik. Up to equivalence, this is the unique ribbon Grothendieck-Verdier structure on $Z(\mathcal{C})$ extending the canonical balanced braided structure that $Z(\mathcal{C})$ already comes equipped with. The duality fun…
Algèbres et cogèbres de Gerstenhaber et cohomologie de Chevalley–Harrison
2009
Resume Un prototype des algebres de Gerstenhaber est l'espace T poly ( R d ) des champs de tenseurs sur R d muni du produit exterieur et du crochet de Schouten. Dans cet article, on decrit explicitement la structure de la G ∞ algebre enveloppante d'une algebre de Gerstenhaber. Cette structure permet de definir une cohomologie de Chevalley–Harrison sur cette algebre. On montre que cette cohomologie a valeur dans R n'est pas triviale dans le cas de la sous algebre de Gerstenhaber des tenseurs homogenes T poly hom ( R d ) .
Invariant Jordan curves of Sierpinski carpet rational maps
2015
In this paper, we prove that if $R\colon\widehat{\mathbb{C}}\to\widehat{\mathbb{C}}$ is a postcritically finite rational map with Julia set homeomorphic to the Sierpi\'nski carpet, then there is an integer $n_0$, such that, for any $n\ge n_0$, there exists an $R^n$-invariant Jordan curve $\Gamma$ containing the postcritical set of $R$.
CHEVALLEY COHOMOLOGY FOR KONTSEVICH'S GRAPHS
2005
We introduce the Chevalley cohomology for the graded Lie algebra of polyvector fields on $R^d$. This cohomology occurs naturally in the problem of construction and classification of fomalities on the sapce $ R^d$. Considering only graphs formalities, we define the Chevalley cohomology directly on spaces of graphs. We obtain some simple expressions for the Chevalley coboundary operator and we give examples and applications.
On algebraic supergroups, coadjoint orbits and their deformations
2004
In this paper we study algebraic supergroups and their coadjoint orbits as affine algebraic supervarieties. We find an algebraic deformation quantization of them that can be related to the fuzzy spaces of non-commutative geometry.
Cohomology and associated deformations for not necessarily co-associative bialgebras
1992
In this Letter, a cohomology and an associated theory of deformations for (not necessarily co-associative) bialgebras are studied. The cohomology was introduced in a previous paper (Lett. Math. Phys.25, 75–84 (1992)). This theory has several advantages, especially in calculating cohomology spaces and in its adaptability to deformations of quasi-co-associative (qca) bialgebras and even quasi-triangular qca bialgebras.
Contractions yielding new supersymmetric extensions of the poincaré algebra
1991
Two new Poincare superalgebras are analysed. They are obtained by the Wigner-Inonu contraction from two real forms of the superalgebra OSp(2;4;C) - one describing the N = 2 anti-de-Sitter superalgebra with a non-compact internal symmetry SO(1, 1) and the other corresponding to the de-Sitter superalgebra with internal symmetry SO(2). Both are 19-dimensional self-conjugate extensions of the Konopel'chenko superalgebra. They contain 10 Poincare generators and one generator of internal symmetry in addition to 8 odd generators half of which, however, do not commute with translations.
Star Products on Coadjoint Orbits
2000
We study properties of a family of algebraic star products defined on coadjoint orbits of semisimple Lie groups. We connect this description with the point of view of differentiable deformations and geometric quantization.