Search results for "Quantum computing"

showing 10 items of 49 documents

Quantum computing challenges in the software industry. A fuzzy AHP-based approach

2022

Context The current technology revolution has posed unexpected challenges for the software industry. In recent years, the field of quantum computing (QC) technologies has continued to grow in influence and maturity, and it is now poised to revolutionise software engineering. However, the evaluation and prioritisation of QC challenges in the software industry remain unexplored, relatively under-identified and fragmented. Objective The purpose of this study is to identify, examine and prioritise the most critical challenges in the software industry by implementing a fuzzy analytic hierarchy process (F-AHP). Method First, to identify the key challenges, we conducted a systematic literature rev…

Software process automationMultiple-criteria decision-making (MCDM):Teknologi: 500::Informasjons- og kommunikasjonsteknologi: 550 [VDP]Quantum computingFuzzy analytic hierarchy processVDP::Teknologi: 500::Informasjons- og kommunikasjonsteknologi: 550SoftwareQuantum software requirementComputer Science ApplicationsInformation Systems
researchProduct

Quantum Machine Learning: A tutorial

2021

This tutorial provides an overview of Quantum Machine Learning (QML), a relatively novel discipline that brings together concepts from Machine Learning (ML), Quantum Computing (QC) and Quantum Information (QI). The great development experienced by QC, partly due to the involvement of giant technological companies as well as the popularity and success of ML have been responsible of making QML one of the main streams for researchers working on fuzzy borders between Physics, Mathematics and Computer Science. A possible, although arguably coarse, classification of QML methods may be based on those approaches that make use of ML in a quantum experimentation environment and those others that take…

SpeedupTheoretical computer scienceQuantum machine learningComputer scienceCognitive NeuroscienceQuantum reinforcement learningQuantum computingFuzzy logicPopularityComputer Science ApplicationsComputational speed-upDevelopment (topology)Artificial IntelligenceQuantum clusteringQuantum informationQuantumQuantum-inspired learning algorithmsQuantum computerQuantum autoencoders
researchProduct

Quantum Ring in a Magnetic Field: High Harmonic Generation and NOT Logic Gate

2020

The effect of a static magnetic field on the high harmonic generation (HHG) from a quantum ring driven by one laser polarized along the x-axis is studied. The spin polarization (Formula presented.) and the temporal emission of the harmonics are studied by varying the intensity of the magnetic field and it is shown how these results have a significant technological impact in computer technology; in fact a boolean algebra can be implemented by assigning 0 and 1 values to low and high pulse intensities of the emitted harmonics and logic gates like the NOT can be created.

Statistics and ProbabilityPhysicsNumerical AnalysisRing (mathematics)Multidisciplinaryhigh harmonic generationquantum computingMagnetic fieldModeling and SimulationQuantum mechanicsLogic gatelogic gatesHigh harmonic generationnanoringsQuantumQuantum computerAdvanced Theory and Simulations
researchProduct

The Sound of Swarm. Auditory Description of Swarm Robotic Movements

2023

Movements of robots in a swarm can be mapped to sounds, highlighting the group behavior through the coordinated and simultaneous variations of musical parameters across time. The vice versa is also possible: sound parameters can be mapped to robotic motion parameters, giving instructions through sound. In this article, we first develop a theoretical framework to relate musical parameters such as pitch, timbre, loudness, and articulation (for each time) with robotic parameters such as position, identity, motor status, and sensor status. We propose a definition of musical spaces as Hilbert spaces, and musical paths between parameters as elements of bigroupoids, generalizing existing conceptio…

Swarm robotics quantum computing sonificationSettore ING-INF/05 - Sistemi Di Elaborazione Delle InformazioniHuman-Computer InteractionArtificial IntelligenceACM Transactions on Human-Robot Interaction
researchProduct

Supervised learning of time-independent Hamiltonians for gate design

2018

We present a general framework to tackle the problem of finding time-independent dynamics generating target unitary evolutions. We show that this problem is equivalently stated as a set of conditions over the spectrum of the time-independent gate generator, thus transforming the task to an inverse eigenvalue problem. We illustrate our methodology by identifying suitable time-independent generators implementing Toffoli and Fredkin gates without the need for ancillae or effective evolutions. We show how the same conditions can be used to solve the problem numerically, via supervised learning techniques. In turn, this allows us to solve problems that are not amenable, in general, to direct ana…

Theoretical computer scienceDiagonalFOS: Physical sciencesGeneral Physics and AstronomyInverseToffoli gate02 engineering and technologysupervised learning01 natural sciencesUnitary statequantum computingSettore FIS/03 - Fisica Della Materia010305 fluids & plasmasSet (abstract data type)Computer Science::Hardware Architecturesymbols.namesakeComputer Science::Emerging Technologiesquant-ph020204 information systems0103 physical sciences0202 electrical engineering electronic engineering information engineering010306 general physicsEigenvalues and eigenvectorsQuantum computerMathematicsPhysicsFlexibility (engineering)Discrete mathematicsQuantum PhysicsSupervised learningInverse problemHermitian matrixmachine learningQubitsymbolsPairwise comparisonquantum circuitsQuantum Physics (quant-ph)Hamiltonian (quantum mechanics)Generator (mathematics)Quantum Information and Measurement (QIM) V: Quantum Technologies
researchProduct

Rational design and modelling of f-block molecular nanomagnets

2016

Los imanes monomoleculares o moléculas imán, por sus siglas en inglés SMMs, han suscitado una gran atención en los últimos años debido a sus extraordinarias propiedades físicas. Los cristales de este tipo de moléculas se caracterizan por presentar relajación lenta de la magnetización a baja temperatura, así como curvas de histeresis magnética. Estas moléculas se encuentran entre las entidades con comportamiento magnético más complejas, mostrando fenómenos cuánticos tales como efecto túnel en la magnetización, coherencia cuántica o interferencia cuántica. Por esto, se han postulado como candidatos prometedores para el diseño de bits cuánticos (qubits) de espín en computación cuántica. La pri…

UNESCO::FÍSICA::Electromagnetismo ::MagnetismoUNESCO::QUÍMICA::Química inorgánica ::Estructura de los compuestos inorgánicoslanthanides and actinides:FÍSICA::Electromagnetismo ::Magnetismo [UNESCO]:FÍSICA::Física del estado sólido ::Estados electrónicos [UNESCO]:FÍSICA::Física molecular::Moléculas inorgánicas [UNESCO]:QUÍMICA::Química inorgánica ::Estructura de los compuestos inorgánicos [UNESCO]UNESCO::QUÍMICA::Química inorgánica ::Compuestos de coordinaciónUNESCO::FÍSICA::Física molecular::Moléculas inorgánicas:QUÍMICA::Química inorgánica ::Compuestos de coordinación [UNESCO]computational chemistryquantum computingUNESCO::FÍSICA::Física del estado sólido ::Estados electrónicosmolecular nanomagnetism:QUÍMICA::Química inorgánica ::Tierras raras [UNESCO]coordination complexes:QUÍMICA::Química inorgánica ::Compuestos organometálicos [UNESCO]UNESCO::QUÍMICA::Química inorgánica ::Tierras rarasUNESCO::QUÍMICA::Química inorgánica ::Compuestos organometálicoscrystal field
researchProduct

Quantum Creativity and Cognition in Humans and Robots

2022

In this research, we present a categorical framework to connect research on creativity and cognition for humans and robots, in light of the quantum paradigm. These fields and their relationships suggest a wider vision: modeling human creativity/cognition through quantum computing, and creating robots that can help us learn more about the humans themselves. We represent the human–robot comparison through functors (function generalization). Fundamental elements to understand human creativity are motivation and feedback as aesthetic pleasure. Is it possible to model it? Can the quantum paradigm help us in such an endeavor? We envisage the concept of emergence and quantum computing as decisive…

creativity modelingswarm intelligenceGeneral MedicineQuantum computingJournal of Artificial Intelligence and Consciousness
researchProduct

Design and simulation of QCA-based 3-bit binary to gray and vice versa code converter in reversible and non-reversible mode

2022

The current Very Large-Scale Integration (VLSI) technology has reached its peak due to the fundamental physical limits of Complementary Metal-Oxide-Semiconductor (CMOS). Quantum-dot Cellular Automata (QCA) is considered a proper alternative to CMOS technology in digital circuit design. QCA has features like low power, small area, and high speed in nanoscale digital circuit design. A code converter is a circuit that converts a determined code to another one. Code converters such as Binary to Gray, Gray to Binary, and Binary to BCD converters have a crucial role in fast signal processing in digital systems. Also, code converters are used as a base unit for data transmission into the Arithmeti…

logiikkaohjelmointibinary to graykvanttitietokoneetHardware_INTEGRATEDCIRCUITSsoluautomaatitQuantum computingreversible logickvanttilaskentaElectrical and Electronic Engineeringquantum-dot cellular automatagray to binaryAtomic and Molecular Physics and OpticsElectronic Optical and Magnetic MaterialsOptik
researchProduct

Characterisation of the Degree of Musical Non-Markovianity

2022

As an aid for musical analysis, in computational musicology mathematical andinformatics tools have been developed to characterise quantitatively some aspectsof musical compositions. A musical composition can be attributed by ear a certainamount of memory. These results are associated with repetitions and similarities ofthe patterns in musical scores. To higher variations, a lower amount of memory isperceived. However, the musical memory of a score has never been quantitativelydefined. Here we aim to give such a measure following an approach similar tothat used in physics to quantify the memory (non-Markovianity) of open quantumsystems. We apply this measure to some existing musical composit…

memorySettore FIS/02 - Fisica Teorica Modelli E Metodi MatematiciSettore INF/01 - InformaticaQuantum mechanicquantum computingMusicmusic analysiJournal of Creative Music Systems
researchProduct

Quaternary Reversible Circuit Optimization for Scalable Multiplexer and Demultiplexer

2023

Information loss is generally related to power consumption. Therefore, reducing information loss is an interesting challenge in designing digital systems. Quaternary reversible circuits have received significant attention due to their low-power design applications and attractive advantages over binary reversible logic. Multiplexer and demultiplexer circuits are crucial parts of computing circuits in ALU, and their efficient design can significantly affect the processors’ performance. A new scalable realization of quaternary reversible 4×1 multiplexer and 1×4 demultiplexer, based on quaternary 1-qudit Shift, 2-qudit Controlled Feynman, and 2-qudit Muthukrishnan-Stroud gates, is presented in …

multiplexingGeneral Computer Sciencecircuit synthesislogic gatesGeneral EngineeringGalois fieldscostsGeneral Materials SciencetransformsElectrical and Electronic Engineeringkvanttilaskentaquantum computing
researchProduct