Search results for "Quantum computing"

showing 10 items of 49 documents

Roadmap on quantum nanotechnologies

2021

Quantum phenomena are typically observable at length and time scales smaller than those of our everyday experience, often involving individual particles or excitations. The past few decades have seen a revolution in the ability to structure matter at the nanoscale, and experiments at the single particle level have become commonplace. This has opened wide new avenues for exploring and harnessing quantum mechanical effects in condensed matter. These quantum phenomena, in turn, have the potential to revolutionize the way we communicate, compute and probe the nanoscale world. Here, we review developments in key areas of quantum research in light of the nanotechnologies that enable them, with a …

Materials scienceFOS: Physical sciencesBioengineeringnanotekniikka02 engineering and technology01 natural sciencesnanotieteet530quantum computingEveryday experience0103 physical sciencesMesoscale and Nanoscale Physics (cond-mat.mes-hall)Quantum metrologyquantum electrodynamicsGeneral Materials Scienceddc:530kvanttimekaniikkaElectrical and Electronic Engineering010306 general physicsQuantum information sciencekvanttifysiikkaQuantumQuantum tunnellingQuantum computerQuantum PhysicsnanotechnologyCondensed Matter - Mesoscale and Nanoscale PhysicsMechanical EngineeringMacroscopic quantum phenomenaObservableGeneral Chemistry021001 nanoscience & nanotechnology530 PhysikEngineering physicsquantum phenomena3. Good healthMechanics of Materials0210 nano-technologyQuantum Physics (quant-ph)Nanotechnology
researchProduct

Entanglement of superconducting qubits via microwave fields: Classical and quantum regimes

2008

We study analytically and numerically the problem of two qubits with fixed coupling irradiated with quantum or classical fields. In the classical case, we derive an effective Hamiltonian, and construct composite pulse sequences leading to a CNOT gate. In the quantum case, we show that qubit-qubit-photon multiparticle entanglement and maximally entangled two-qubit state can be obtained by driving the system at very low powers (one quanta of excitation). Our results can be applied to a variety of systems of two superconducting qubits coupled to resonators.

PhysicsQuantum PhysicsCondensed Matter - SuperconductivityQuantum sensorFOS: Physical sciencesQuantum PhysicsQuantum entanglementCondensed Matter PhysicsElectronic Optical and Magnetic MaterialsSuperconductivity (cond-mat.supr-con)Computer Science::Emerging TechnologiesControlled NOT gateQuantum mechanicsQuantum electrodynamicsW stateQuantum Physics (quant-ph)Amplitude damping channelSuperconducting quantum computingTrapped ion quantum computerQuantum teleportationPhysical Review B
researchProduct

Emulating the one-dimensional Fermi-Hubbard model by a double chain of qubits

2016

The Jordan-Wigner transformation maps a one-dimensional spin-1/2 system onto a fermionic model without spin degree of freedom. A double chain of quantum bits with XX and ZZ couplings of neighboring qubits along and between the chains, respectively, can be mapped on a spin-full 1D Fermi-Hubbard model. The qubit system can thus be used to emulate the quantum properties of this model. We analyze physical implementations of such analog quantum simulators, including one based on transmon qubits, where the ZZ interaction arises due to an inductive coupling and the XX interaction due to a capacitive interaction. We propose protocols to gain confidence in the results of the simulation through measu…

PhysicsQuantum PhysicsHubbard modelCondensed Matter - Mesoscale and Nanoscale PhysicsCondensed Matter - SuperconductivityQuantum simulatorFOS: Physical sciences02 engineering and technologyTransmon021001 nanoscience & nanotechnology01 natural sciencesInductive couplingSuperconductivity (cond-mat.supr-con)Quantum mechanicsQubit0103 physical sciencesMesoscale and Nanoscale Physics (cond-mat.mes-hall)010306 general physics0210 nano-technologySuperconducting quantum computingQuantum Physics (quant-ph)QuantumSpin-½
researchProduct

Resetting of a planar superconducting quantum memory

2009

We consider and analyze a scheme for the reset of a M × N planar array of inductively coupled Josephson flux qubits. We prove that it is possible to minimize the resetting time of an arbitrary chosen row of qubits by properly switching on and off the coupling between pairs of qubits belonging to the same column. In addition, the analysis of the time evolution of the array allows us to single out the class of generalized W states which can be successfully reset.

PhysicsFlux qubitSquidsPlanar arrayTime evolutionJosephson deviceQuantum PhysicsQuantum entanglementSettore FIS/03 - Fisica Della MateriaComputer Science::Emerging TechnologiesQuantum mechanicsQubitQuantum computationSuperconducting quantum computingReset (computing)Computer Science::Formal Languages and Automata TheoryQuantum computerEntanglement production and manipulation
researchProduct

Quantum RoboSound: Auditory Feedback of a Quantum-Driven Robotic Swarm

2022

Data sonification enhance and enrich information understanding with an additional sensory dimension. Sonification also opens the way to more creative applications, joining arts and sciences. In this study, we present sequences of chords obtained as auditory feedback from the trajectories of a robotic swarm. The swarm behavior is an emerging effect from simple local interactions and autonomous decisions of each robot. The swarm effect can be identified through sonification outcomes in terms of voice leading patterns. Thus, chord patterns represent behavior patterns. The convergence to the target is represented by the convergence to a specific pitch. The swarm decision process is based upon q…

Settore ING-INF/05 - Sistemi Di Elaborazione Delle InformazioniSettore FIS/02 - Fisica Teorica Modelli E Metodi MatematiciSettore ING-INF/04 - AutomaticaSettore INF/01 - Informaticasonificationquantum computingRobotic
researchProduct

Perturbative many-body transfer

2020

The transfer of excitations between different locations of a quantum many-body system is of primary importance in many research areas, from transport properties in spintronics and atomtronics to quantum state transfer in quantum information processing. We address the transfer of n > 1 bosonic and fermionic excitations between the edges of a one-dimensional chain modelled by a quadratic hopping Hamiltonian, where the block edges, embodying the sender and the receiver sites, are weakly coupled to the quantum wire. We find that perturbative high-quality transfer is attainable in the weak-coupling limit, for both bosons and fermions, only for certain modular arithmetic equivalence classes of th…

PhysicsQuantum physicsGeneral Physics and AstronomyQuantum computing01 natural sciencesMany bodyquantum many-body systems quantum excitation transfer quantum spin chain quadratic Hamiltonian010305 fluids & plasmasMany-body problemTheoretical physicsTransfer (group theory)Quantum systems0103 physical sciences010306 general physics
researchProduct

Selective reset of a chain of interacting superconducting qubits

2010

We propose and analyze a scheme for the selective reset of a chain of inductively coupled Josephson flux qubits initially prepared in a multipartite entangled state. The possibility of controlling at will the coupling between two prefixed qubits is exploited to drive a "generalized W state" to a factorized state with only one qubit in the excited state and all the other qubits in their own ground states.

Josephson devices Quantum computing Entanglement Quantum control.Settore FIS/03 - Fisica Della Materia
researchProduct

The Sound of Swarm. Auditory Description of Swarm Robotic Movements

2023

Movements of robots in a swarm can be mapped to sounds, highlighting the group behavior through the coordinated and simultaneous variations of musical parameters across time. The vice versa is also possible: sound parameters can be mapped to robotic motion parameters, giving instructions through sound. In this article, we first develop a theoretical framework to relate musical parameters such as pitch, timbre, loudness, and articulation (for each time) with robotic parameters such as position, identity, motor status, and sensor status. We propose a definition of musical spaces as Hilbert spaces, and musical paths between parameters as elements of bigroupoids, generalizing existing conceptio…

Swarm robotics quantum computing sonificationSettore ING-INF/05 - Sistemi Di Elaborazione Delle InformazioniHuman-Computer InteractionArtificial IntelligenceACM Transactions on Human-Robot Interaction
researchProduct

Design and simulation of QCA-based 3-bit binary to gray and vice versa code converter in reversible and non-reversible mode

2022

The current Very Large-Scale Integration (VLSI) technology has reached its peak due to the fundamental physical limits of Complementary Metal-Oxide-Semiconductor (CMOS). Quantum-dot Cellular Automata (QCA) is considered a proper alternative to CMOS technology in digital circuit design. QCA has features like low power, small area, and high speed in nanoscale digital circuit design. A code converter is a circuit that converts a determined code to another one. Code converters such as Binary to Gray, Gray to Binary, and Binary to BCD converters have a crucial role in fast signal processing in digital systems. Also, code converters are used as a base unit for data transmission into the Arithmeti…

logiikkaohjelmointibinary to graykvanttitietokoneetHardware_INTEGRATEDCIRCUITSsoluautomaatitQuantum computingreversible logickvanttilaskentaElectrical and Electronic Engineeringquantum-dot cellular automatagray to binaryAtomic and Molecular Physics and OpticsElectronic Optical and Magnetic MaterialsOptik
researchProduct

Generation of multipartite entangled states in Josephson architectures

2006

We propose and analyze a scheme for the generation of multipartite entangled states in a system of inductively coupled Josephson flux qubits. The qubits have fixed eigenfrequencies during the whole process in order to minimize decoherence effects and their inductive coupling can be turned on and off at will by tuning an external control flux. Within this framework, we will show that a W state in a system of three or more qubits can be generated by exploiting the sequential one by one coupling of the qubits with one of them playing the role of an entanglement mediator.

PhysicsQuantum computers Quantum optics flux qubitsQuantum PhysicsBell stateFlux qubitCondensed Matter - SuperconductivityCluster stateFOS: Physical sciencesWIGNER-FUNCTIONQuantum entanglementQuantum PhysicsQUANTUM-STATECondensed Matter PhysicsCOMPUTATIONElectronic Optical and Magnetic MaterialsSuperconductivity (cond-mat.supr-con)MultipartiteComputer Science::Emerging TechnologiesQuantum mechanicsTOMOGRAPHYW stateQuantum Physics (quant-ph)Superconducting quantum computingEntanglement distillationCHARGE QUBITS
researchProduct