Search results for "Quantum dot"

showing 10 items of 418 documents

Silicon-based light-emitting devices: Properties and applications of crystalline, amorphous and er-doped nanoclusters

2006

In this paper, we summarize the results of an extensive investigation on the properties of MOS-type light-emitting devices based on silicon nanostructures. The performances of crystalline, amorphous, and Er-doped Si nanostructures are presented and compared. We show that all devices are extremely stable and robust, resulting in an intense room temperature electroluminescence (EL) at around 900 nm or at 1.54 μm. Amorphous nanoclusters are more conductive than the crystalline counterpart. In contrast, nonradiative processes seem to be more efficient for amorphous clusters resulting in a lower quantum efficiency. Erbium doping results in the presence of an intense EL at 1.54 μm with a concomit…

Materials scienceSiliconElectroluminescent devicechemistry.chemical_elementNanocrystalQUANTUM DOTSElectroluminescenceSettore ING-INF/01 - ElettronicaSettore FIS/03 - Fisica Della MateriaNanoclustersErbiumIntegrated optoelectronicElectroluminescence (EL)Light-emitting deviceOptical interconnectionElectrical and Electronic Engineeringbusiness.industryDopingOPTICAL-PROPERTIESAtomic and Molecular Physics and OpticsAmorphous solid1.54 MU-MchemistryNanocrystalOptoelectronicsQuantum efficiencySI NANOCRYSTALSENERGY-TRANSFERbusinessErbium
researchProduct

Peculiar aspects of nanocrystal memory cells: Data and extrapolations

2003

Nanocrystal memory cell are a promising candidate for the scaling of nonvolatile memories in which the conventional floating gate is replaced by an array of nanocrystals. The aim of this paper is to present the results of a thorough investigation of the possibilities and the limitations of such new memory cell. In particular, we focus on devices characterized by a very thin tunnel oxide layer and by silicon nanocrystals formed by chemical vapor deposition. The direct tunneling of the electrons through the tunnel oxide, their storage into the silicon nanocrystals, and furthermore, retention, endurance, and drain turn-on effects, well-known issues for nonvolatile memories, are all investigate…

Materials scienceSiliconQuantum dotchemistry.chemical_elementNanotechnologyChemical vapor depositionSettore ING-INF/01 - ElettronicaComputer Science ApplicationsNon-volatile memorySemiconductor memorieTunnel effectEngineering (all)chemistryNanocrystalMemory cellHardware and ArchitectureNanotechnologyElectrical and Electronic EngineeringThin filmHot-carrier injection
researchProduct

Effects of partial self-ordering of Si dots formed by chemical vapor deposition on the threshold voltage window distribution of Si nanocrystal memori…

2006

We study the role that the denuded zone around Si nanocrystals obtained by chemical vapor deposition plays on the fluctuations of the dot surface coverage. In fact, the capture mechanism of the silicon adatoms in the proximity of existing dots restricts the number of possible nucleation sites, the final dot size, and the dot position, thus driving the process toward partial self-order. We numerically evaluate the relative dispersion of surface coverage for several gate areas and compare the results to the fully random case. The coverage dispersion is related to the fluctuations from bit to bit of the threshold voltage window (Δ Vth) distribution of nanocrystal memories. The evaluations, com…

Materials scienceSiliconQuantum dotsbusiness.industryNucleationGeneral Physics and Astronomychemistry.chemical_elementWindow (computing)NanotechnologyChemical vapor depositionCondensed Matter::Mesoscopic Systems and Quantum Hall EffectSettore ING-INF/01 - Elettronicanon volatile memoriesSettore FIS/03 - Fisica Della Materiachemical vapor depositionThreshold voltageDistribution (mathematics)chemistryNanocrystalnanoelectronic devicesscaling lawsDispersion (optics)OptoelectronicsbusinessJournal of Applied Physics
researchProduct

Nanocrystal MOS with silicon-rich oxide

2001

By electrical measurements we investigate the charge trapping and the charge transport in MOS capacitors in which the gate oxide has been replaced with a silicon rich oxide (SRO) film sandwiched between two thin SiO2 layers.

Materials scienceSiliconSROPhysics and Astronomy (miscellaneous)MOS memoryOxideQuantum dotchemistry.chemical_elementNanotechnologyCondensed Matter PhysicCondensed Matter PhysicsSettore ING-INF/01 - ElettronicaAtomic and Molecular Physics and OpticsElectronic Optical and Magnetic Materialschemistry.chemical_compoundchemistryNanocrystalGeneral Materials ScienceMaterials Science (all)
researchProduct

Photonic Crystal‐Driven Spectral Concentration for Upconversion Photovoltaics

2014

The main challenge for applying upconversion (UC) to silicon photovoltaics is the limited amount of solar energy harvested directly via erbium-based upconverter materials (24.5 W m–2). This could be increased up to 87.7 W m–2 via spectral concentration. Due to the nonlinear behavior of UC, this could increase the best UC emission by a factor 13. In this paper, the combined use of quantum dots (QDs)—for luminescent down-shifting—and photonic crystals (PCs)—for reshaping the emission—to achieve spectral concentration is shown. This implies dealing with the coupling of colloidal QDs and PC at the high-density regime, where the modes are shifted and broadened. In the first fabricated all-optica…

Materials scienceSiliconbusiness.industrychemistry.chemical_elementAtomic and Molecular Physics and OpticsPhoton upconversionElectronic Optical and Magnetic MaterialsErbiumchemistryQuantum dotPhotovoltaicsOptoelectronicsbusinessLuminescenceAbsorption (electromagnetic radiation)Photonic crystalAdvanced Optical Materials
researchProduct

Raman study and theoretical calculations of strain in GaN quantum dot multilayers

2006

Changes in strain and phonon mode energy in stacks of self-assembled GaN quantum dots embedded in AlN have been studied by means of Raman spectroscopy as a function of the number of periods. The ${E}_{2H}$ phonon modes related to the quantum dots and AlN spacers are clearly resolved, and their energies allow monitoring the state of strain of the dots and AlN spacers simultaneously. The evolution of the measured phonon frequencies and the associated strains are discussed in comparison with theoretical calculations of the inhomogeneous strain distribution in a system of coherent misfitting inclusions.

Materials scienceStrain (chemistry)Condensed matter physicsPhononCondensed Matter::Mesoscopic Systems and Quantum Hall EffectCondensed Matter PhysicsElectronic Optical and Magnetic MaterialsInhomogeneous strainCondensed Matter::Materials Sciencesymbols.namesakeQuantum dotsymbolsRaman spectroscopyEnergy (signal processing)Physical Review B
researchProduct

Vibrational modes and strain in GaN/AlN quantum dot stacks: dependence on spacer thickness

2007

We have investigated the influence of spacer thickness on the vibrational and strain characteristics of GaN/AlN quantum dot multilayers (QD). The Raman shift corresponding to the E2h vibrational mode related to the QDs has been analyzed for AlN thicknesses ranging from 4.4 nm to 13 nm, while the amount of GaN deposited in each layer remained constant from sample to sample. It is shown that there is a rapid blue shift of the GaN vibrational mode with spacer thickness when its value is smaller than 7 nm while it remains almost constant for thicker spacers. A rapid increase of the Raman line-width in the thicker samples is also observed. The experimental behavior is discussed in comparison wit…

Materials scienceStrain (chemistry)business.industrytechnology industry and agricultureAnalytical chemistryCondensed Matter PhysicsBlueshiftsymbols.namesakeQuantum dotMolecular vibrationsymbolsOptoelectronicsbusinessRaman spectroscopyLayer (electronics)physica status solidi c
researchProduct

Self-Assembly of Amphiphilic Nanocrystals

2009

Amphiphilic hybrid materials are formed from polymer-coated semiconductor nanoparticles that simulate a surfactant-like response (see picture). The strength and density of the surface coating are the key assembling forces driving a transition from single particles to cylindrical or vesicular superstructures.

Materials scienceSurface PropertiesNanoparticleNanotechnologyGeneral ChemistryCatalysisSurface-Active AgentsSurface coatingNanocrystalQuantum DotsAmphiphileNanoparticlesSelf-assemblyHybrid materialHydrophobic and Hydrophilic InteractionsSemiconductor NanoparticlesAngewandte Chemie International Edition
researchProduct

The effect of band gap alignment on the hole transport from semiconducting block copolymers to quantum dots

2013

Semiconducting hole transporting block copolymers were chemically modified to adjust their energy levels to that of CdSe/CdS/CdZnS red quantum dots. Hybrids with optimized energy levels could be used to build strongly improved quantum dot based LEDs (QLEDs).

Materials sciencebusiness.industryBand gapNanotechnologyGeneral ChemistryCondensed Matter::Mesoscopic Systems and Quantum Hall Effectlaw.inventionCondensed Matter::Materials ScienceQuantum dotlawMaterials ChemistryCopolymerOptoelectronicsbusinessLight-emitting diodeJournal of Materials Chemistry C
researchProduct

Different strategies towards the deterministic coupling of a single Quantum Dot to a photonic crystal cavity mode

2011

In this work we show two different procedures of fabrication aiming towards the systematic positioning of single InAs quantum dots (QDs) coupled to a GaAs photonic crystal (PC) microcavity. The two approaches are based on the molecular beam epitaxial (MBE) growth of site-controlled QDs (SCQDs) on pre-patterned structures. The PC microcavity (PCM) is introduced previous or after the growth, on each case. We demonstrate the InAs SCQD nucleation on pre-patterned PCMs and a method to perform the QD nucleation respect to an etched ruler that is used to position the PC structure after growth. For both types of structures, we have carried out microphotoluminescence (µPL) spectroscopy experiments a…

Materials sciencebusiness.industryCavity quantum electrodynamicsNucleationGallium arsenidechemistry.chemical_compoundchemistryQuantum dotOptoelectronicsPhotonicsbusinessMolecular beamMolecular beam epitaxyPhotonic crystal2011 13th International Conference on Transparent Optical Networks
researchProduct