Search results for "Quantum dot"

showing 10 items of 418 documents

Hyaluronic acid and its derivatives in drug delivery and imaging: Recent advances and challenges.

2015

Hyaluronic acid (HA) is a biodegradable, biocompatible, nontoxic, and non-immunogenic glycosaminoglycan used for various biomedical applications. The interaction of HA with the CD44 receptor, whose expression is elevated on the surface of many types of tumor cells, makes this polymer a promising candidate for intracellular delivery of imaging and anticancer agents exploiting a receptor-mediated active targeting strategy. Therefore, HA and its derivatives have been most investigated for the development of several carrier systems intended for cancer diagnosis and therapy. Nonetheless, different and important delivery applications of the polysaccharide have also been described, including gene …

Diagnostic ImagingCarbon nanotubes; Drug delivery; Hyaluronic acid; Intracellular delivery; Quantum dots; TheranosticsPolyestersCarbon nanotubesAcrylic ResinsPharmaceutical ScienceTumor cellsNanotechnologyPolyethylene Glycolschemistry.chemical_compoundDrug Delivery SystemsPolylactic Acid-Polyglycolic Acid CopolymerHyaluronic acidMedicineHumansLactic AcidHyaluronic Acidbusiness.industryQuantum dotsNanotubes CarbonHydrogelsGeneral MedicineIntracellular deliveryBiocompatible materialTheranosticschemistryDrug deliveryDrug deliveryNanocarriersbusinessPolyglycolic AcidBiotechnologyEuropean journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V
researchProduct

Structural properties of GaN quantum dots

2006

The strain state and the deformation profile of GaN quantum dots embedded in AlN have been measured by high resolution electron microscopy, medium energy ion scattering and grazing incidence X-ray diffraction. The results are compared with theoretical calculations, allowing one to conclude that GaN quantum dots experience a non biaxial strain which drastically decreases when going from the basal plane up to the apex of the dots. We also demonstrate that AlN is distorted in the surroundings of the dots, which provides the driving force for vertical correlation of GaN dots when the AlN spacer between successive planes is thin enough.

DiffractionCondensed Matter::Materials ScienceBiaxial strainMaterials scienceHigh resolution electron microscopyCondensed matter physicsScatteringQuantum dotDeformation (engineering)Condensed Matter::Mesoscopic Systems and Quantum Hall EffectHigh-resolution transmission electron microscopyIon
researchProduct

Raman scattering as a tool for the evaluation of strain inGaN∕AlNquantum dots: The effect of capping

2007

The strain state of $\mathrm{Ga}\mathrm{N}∕\mathrm{Al}\mathrm{N}$ quantum dots grown on $6H\text{\ensuremath{-}}\mathrm{Si}\mathrm{C}$ has been investigated as a function of AlN capping thickness by three different techniques. On the one hand, resonant Raman scattering allowed the detection of the ${A}_{1}(\mathrm{LO})$ quasiconfined mode. It was found that its frequency increases with AlN deposition, while its linewidth did not evolve significantly. Available experiments of multiwavelength anomalous diffraction and diffraction anomalous fine structure on the same samples provided the determination of the wurtzite lattice parameters $a$ and $c$ of the quantum dots. A very good agreement is …

DiffractionMaterials scienceCondensed matter physicsScatteringbusiness.industryLattice (group)Condensed Matter PhysicsSpectral lineElectronic Optical and Magnetic MaterialsCondensed Matter::Materials Sciencesymbols.namesakeOpticsQuantum dotsymbolsRaman spectroscopybusinessRaman scatteringWurtzite crystal structurePhysical Review B
researchProduct

Evaluation of strain in GaN/AlN quantum dots by means of resonant Raman scattering: the effect of capping

2007

We have studied in detail changes in the strain state of GaN/AlN quantum dots during the capping process. μ-Raman scattering experiments allowed the detection of a resonant mode which provided information on the evolution of strain with capping. Simultaneously, Multiwavelength Anomalous Diffraction (MAD) and Diffraction Anomalous Fine Structure (DAFS) experiments were performed on the same samples, providing the independent determination of the wurtzite lattice parameters a and c. The remarkable agreement between Raman and X-ray data stands out the suitability of polar vibrational modes for the determination of strain in nanostructures. (© 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)

DiffractionNanostructureChemistryScatteringAnalytical chemistryCondensed Matter PhysicsMolecular physicsCondensed Matter::Materials Sciencesymbols.namesakeQuantum dotMolecular vibrationsymbolsRaman spectroscopyRaman scatteringWurtzite crystal structurephysica status solidi c
researchProduct

II–VI and II1−xMnxVI semiconductor nanocrystals formed by the pressure cycle method

2005

II–VI and II1−x Mn x VI nanocrystals were prepared by the pressure cycle method using the Paris–Edinburgh cell. The recovered samples are nanocrystals in the cubic phase zinc-blend (ZB) structure and were characterized using transmission electron microscopy, electron diffraction, X-ray diffraction and Raman scattering. Transmission electron micrographs show that these nanocrystals are nearly spherical with diameters ranging from 20 to 50 nm depending on the sample under investigation. The Raman scattering measurements confirm the existence of II–VI nanocrystals in the cubic phase (ZB). The magnetic properties of Cd0.5Mn0.5Te nanoparticles were found to vary with the particle size and were d…

Diffractionsymbols.namesakeMaterials scienceElectron diffractionNanocrystalTransmission electron microscopyQuantum dotPhase (matter)symbolsAnalytical chemistryNanoparticleCondensed Matter PhysicsRaman scatteringHigh Pressure Research
researchProduct

Synthesis and Spectroscopic Properties of Silica−Dye−Semiconductor Nanocrystal Hybrid Particles

2010

We prepared silica-dye-nanocrystal hybrid particles and studied the energy transfer from semiconductor nanocrystals (= donor) to organic dye molecules (= acceptor). Multishell CdSe/CdS/ZnS semiconductor nanocrystals were adsorbed onto monodisperse Stöber silica particles with an outer silica shell of thickness 2-23 nm containing organic dye molecules (Texas Red). The thickness of this dye layer has a strong effect on the energy transfer efficiency, which is explained by the increase in the number of dye molecules homogeneously distributed within the silica shell, in combination with an enhanced surface adsorption of nanocrystals with increasing dye amount. Our conclusions were underlined by…

DispersityTexas RedBinary compoundNanotechnologychemistry.chemical_compoundAdsorptionMicroscopy Electron TransmissionQuantum DotsFluorescence Resonance Energy TransferElectrochemistryNanotechnologyMoleculeGeneral Materials ScienceColoring AgentsSpectroscopySurfaces and InterfacesSilicon DioxideCondensed Matter PhysicsAcceptorModels ChemicalSemiconductorsXantheneschemistryChemical engineeringNanocrystalSpectrophotometryNanoparticlesParticleSpectrophotometry UltravioletAdsorptionMonte Carlo MethodLangmuir
researchProduct

Field-induced nanolithography for high-throughput pattern transfer.

2009

Electromagnetic fieldMaterials scienceField (physics)NanotechnologyGeneral ChemistryDielectrophoresisNanostructuresBiomaterialsNanolithographyElectromagnetic FieldsQuantum dotQuantum DotsNanotechnologyGeneral Materials ScienceThroughput (business)BiotechnologySmall (Weinheim an der Bergstrasse, Germany)
researchProduct

Gigahertz Single-Electron Pumping Mediated by Parasitic States

2018

In quantum metrology, semiconductor single-electron pumps are used to generate accurate electric currents with the ultimate goal of implementing the emerging quantum standard of the ampere. Pumps based on electrostatically defined tunable quantum dots (QDs) have thus far shown the most promising performance in combining fast and accurate charge transfer. However, at frequencies exceeding approximately 1 GHz, the accuracy typically decreases. Recently, hybrid pumps based on QDs coupled to trap states have led to increased transfer rates due to tighter electrostatic confinement. Here, we operate a hybrid electron pump in silicon obtained by coupling a QD to multiple parasitic states, and achi…

Electron capturePhysics::OpticsFOS: Physical sciencesBioengineering02 engineering and technologyElectron7. Clean energy01 natural sciencesQuantization (physics)0103 physical sciencesMesoscale and Nanoscale Physics (cond-mat.mes-hall)Quantum metrologyGeneral Materials Science010306 general physicsQuantumQCPhysicsta214Condensed Matter - Mesoscale and Nanoscale Physicsta114business.industryMechanical EngineeringQuantum dotsiliconGeneral Chemistry021001 nanoscience & nanotechnologyCondensed Matter PhysicsSemiconductorQuantum dotquantum electrical metrologysingle-electron pumpOptoelectronicsElectric current0210 nano-technologybusinessNANO LETTERS
researchProduct

Size-dependent electron transfer from atomically defined nanographenes to metal oxide nanoparticles.

2020

Atomically defined nanographenes (NGs) feature size-dependent energy gaps induced by, and tuneable through, quantum confinement. Their energy-tunability and robustness make NGs appealing candidates as active elements in sensitized geometries, where NGs functionalize a metal oxide (MO) film with large-area-to-volume ratio. Despite the prominent relevance of NG/MO interfaces for developing novel architectures for solar energy conversion, to date, little information is available regarding the fundamentals of electron transfer (ET) processes taking place from NG donors to MO acceptors. Here, we analyze the interplay between the size of atomically precise NGs and ET dynamics at NG/MO interfaces.…

Electron transferchemistry.chemical_compoundMaterials sciencechemistryChemical physicsQuantum dotSize dependentOxideSolar energy conversionGeneral Materials ScienceMetal oxide nanoparticlesOverpotentialAcceptorNanoscale
researchProduct

New Quasi-Atomic Nanoheterostructures: Superatoms and Excitonic Quasi-Molecules

2016

In this review, the state-of-the-art of research of artificial atoms (superatoms or quasi-atomic nanoheterostructures) and more complex nanostructures based on them—synthetic molecules is discussed, a new model of an artificial atom, which satisfactorily explains its electronic properties, is proposed, and the prospects for development of the new scientific trend are mentioned. В этом обзоре обсуждается современное состояние исследований искусственных атомов (сверхатомов или квазиатомных наногетероструктур) и более сложных наноструктур на их основе — синтетических молекул, предложена новая модель искусственного атома, удовлетворительно объясняющая его электронные свойства, а также указаны п…

Electronic Optical and Magnetic MaterialMaterials Science (miscellaneous)Excitonic quasi-moleculeQuantum dotSuperatomNanoheterostructureCeramics and CompositeEnergy spectrumElectronHoleSettore FIS/03 - Fisica Della MateriaSurfaces Coatings and Films
researchProduct