Search results for "Quantum efficiency"
showing 10 items of 92 documents
Influence of cerium content and heat treatment on Ce:YAG@glass wool nanostructures
2019
The paper reports the influence of cerium content and heat treatment on composition, structural features and optical properties of nanostructures constituted by a layer of Ce:YAG nanoparticles on glass wool (Ce:YAG@GW). The Ce:YAG@GW nanostructures were obtained embedding the glass wool (GW) in a gel-like precursor and calcining at 800 and 900 °C. Gel-like precursor of urea glass route (UGR) method has been used to prepare both nanostructures and Ce:YAG nanoparticles prepared as references. Structural properties were investigated by using X-ray diffraction (XRD) and infrared spectroscopy (IR). Results showed that the composition of the final products strongly depends both on the cerium cont…
Room-temperature efficient light detection by amorphous Ge quantum wells
2013
In this work, ultrathin amorphous Ge films (2 to 30 nm in thickness) embedded in SiO2 layers were grown by magnetron sputtering and employed as proficient light sensitizer in photodetector devices. A noteworthy modification of the visible photon absorption is evidenced due to quantum confinement effects which cause both a blueshift (from 0.8 to 1.8 eV) in the bandgap and an enhancement (up to three times) in the optical oscillator strength of confined carriers. The reported quantum confinement effects have been exploited to enhance light detection by Ge quantum wells, as demonstrated by photodetectors with an internal quantum efficiency of 70%. © 2013 Cosentino et al.
Results on radiation hardness of black silicon induced junction photodetectors from proton and electron radiation
2020
Abstract The stability of black silicon induced junction photodetectors under high-energy irradiation was tested with 11 MeV protons and 12 MeV electrons using fluence of 1 ⋅ 10 10 protons/cm2 and dose of 67 krad(Si) for protons and electrons, respectively. The energies and dose levels were selected to test radiation levels relevant for space applications. The degradation was evaluated through dark current and external quantum efficiency changes during (within 1 h after each step) and after (some days after) full irradiation sequences. Furthermore, the black silicon photodetectors were compared to planar silicon induced junction and planar silicon pn-junction photodetectors to assess the co…
Seagrass ecosystem response to long-term high CO2 in a Mediterranean volcanic vent
2014
We examined the long-term effect of naturally acidified water on a Cymodocea nodosa meadow growing at a shallow volcanic CO2 vent in Vulcano Island (Italy). Seagrass and adjacent unvegetated habitats growing at a low pH station (pH = 7.65 ± 0.02) were compared with corresponding habitats at a control station (pH = 8.01 ± 0.01). Density and biomass showed a clear decreasing trend at the low pH station and the below- to above-ground biomass ratio was more than 10 times lower compared to the control. C content and delta 13C of leaves and epiphytes were significantly lower at the low pH station. Photosynthetic activity of C. nodosa was stimulated by low pH as seen by the significant increase in…
Dumbbell-Shaped Dinuclear Iridium Complexes and Their Application to Light-Emitting Electrochemical Cells
2010
A novel family of dumbbell- shaped dinuclear complexes in which an oligophenyleneethynylene spacer is linked to two heteroleptic iridiumA complexes is presented. The synthesis, as well as the electrochemical and pho- tophysical characterization of the new complexes, is reported. The experimen- tal results are interpreted with the help of density functional theory calcula- tions. From these studies we conclude that the lowest triplet excited state cor- responds to a 3 p-p* state located on the conjugated spacer. The presence of this state below the 3 MLCT/ 3 LLCT emitting states of the end-capping Ir III complexes explains the low quantum yields observed for the dinuclear com- plexes (one or…
Efficiency enhancement of organic light emitting diodes by NaOH surface treatment of the ITO anode
2009
Abstract Organic light emitting diodes (OLEDs) based on tris-(8-idroxyquinoline)aluminum (Alq 3 ) with enhanced efficiency are reported here. This is obtained by improving the charge carrier balance, through a preliminary NaOH surface treatment of the indium tin oxide (ITO) anode, in order to decrease its work function and, consequently, reduce the hole injection. The obtained devices exhibit a 1.36% external quantum efficiency and a 1.2 lm/W power efficiency at a current density of 60 mA/cm 2 . These values are more than double as compared with those of identical reference devices fabricated without the preliminary NaOH surface treatment.
Photoelectrical properties of thin films of DMABI derivatives
2011
Organic thin films with semiconducting properties have been intensively studied in nowadays due to very promising applications in organic electronics, for example, organic photovoltaic. Among organic semiconductors, group of indandiones with their photoelectrical properties, thermal and chemical stability are good candidates for use in design of novel molecular electronic devices. We have investigated photoconductivity quantum efficiency and its spectral dependence of two dimetilaminobenzylidene-1,3-indandione derivatives. Values of the photoconductivity threshold energy and optical energy gap are obtained. These results are compared with calculated transfer energy gap estimated according t…
Bis(N-naphthyl-N-phenylamino)benzophenones as exciton-modulating materials for white TADF OLEDs with separated charge and exciton recombination zones
2022
Abstract Organic semiconductors were employed as exciton modulators, blue emitters, hole-transporting materials and hosts with resonant-appropriate singlet and triplet energies for efficient and stable white organic light emitting diodes (OLEDs). Two 4,4'-bis(N-naphthyl-N-phenylamino)benzophenones were synthesized using isomeric N-naphthyl-N-phenylamines as the donors and benzophenone as the acceptor moiety. Molecular design of new compounds allowed to obtain required combination of properties, i.e. blue prompt fluorescence in solid state with singlet energies close to those of the selected blue emitter exhibiting thermally activated delayed fluorescence (TADF), low triplet energies of 2.32…
Up-conversion luminescence dependence on structure in zirconia nanocrystals
2013
The zirconia samples containing two different concentrations of Er and Yb dopants were prepared using the Sol–Gel method and up-conversion luminescence was studied using the time-resolved techniques. The up-conversion luminescence depends on the oxygen content in surrounding gasses during annealing as well as on the annealing temperature. These dependencies indicate that ZrO2 intrinsic defects annealing and generation, phase transition as well as dopant redistribution take place. The possible role of these processes on up-conversion luminescence is discussed. The results of experiments confirmed that the annealing temperature has a crucial influence on up-conversion luminescence for samples…
Low-Temperature Atomic Layer Deposition of Crystalline and Photoactive Ultrathin Hematite Films for Solar Water Splitting
2015
We developed a low-temperature atomic layer deposition route to deposit phase pure and crystalline hematite (alpha-Fe2O3) films at 230 degrees C without the need for postannealing. Homogenous and conformal deposition with good aspect ratio coverage was demonstrated on a nanostructured substrate and analyzed by transmission electron microscopy. These as-deposited alpha-Fe2O3 films were investigated as photoanodes for photoelectrochemical water oxidation and found to be highly photoactive. Combined with a TiO2 underlayer and a low-cost Ni(OH)(2) catalyst, hematite films of less than 10 nm in thickness reached photocurrent densities of 0.3 mA cm(-2) at 1.23 V vs RHE and a photocurrent onset po…