Search results for "Quantum efficiency"

showing 10 items of 92 documents

Influence of cerium content and heat treatment on Ce:YAG@glass wool nanostructures

2019

The paper reports the influence of cerium content and heat treatment on composition, structural features and optical properties of nanostructures constituted by a layer of Ce:YAG nanoparticles on glass wool (Ce:YAG@GW). The Ce:YAG@GW nanostructures were obtained embedding the glass wool (GW) in a gel-like precursor and calcining at 800 and 900 °C. Gel-like precursor of urea glass route (UGR) method has been used to prepare both nanostructures and Ce:YAG nanoparticles prepared as references. Structural properties were investigated by using X-ray diffraction (XRD) and infrared spectroscopy (IR). Results showed that the composition of the final products strongly depends both on the cerium cont…

NanostructureMaterials scienceLayer of nanoparticlechemistry.chemical_elementInfrared spectroscopyNanoparticleBioengineeringGlass wool02 engineering and technologyUrea glass route010402 general chemistry01 natural scienceslaw.inventionlawGeneral Materials ScienceCalcinationGeneral Chemistry021001 nanoscience & nanotechnologyCondensed Matter PhysicsGlass woolAtomic and Molecular Physics and Optics0104 chemical sciencesCeriumYAGchemistryChemical engineeringModeling and SimulationSynthetic routeQuantum efficiency0210 nano-technologyLuminescenceJournal of Nanoparticle Research
researchProduct

Room-temperature efficient light detection by amorphous Ge quantum wells

2013

In this work, ultrathin amorphous Ge films (2 to 30 nm in thickness) embedded in SiO2 layers were grown by magnetron sputtering and employed as proficient light sensitizer in photodetector devices. A noteworthy modification of the visible photon absorption is evidenced due to quantum confinement effects which cause both a blueshift (from 0.8 to 1.8 eV) in the bandgap and an enhancement (up to three times) in the optical oscillator strength of confined carriers. The reported quantum confinement effects have been exploited to enhance light detection by Ge quantum wells, as demonstrated by photodetectors with an internal quantum efficiency of 70%. © 2013 Cosentino et al.

NanostructurePhotonMaterials sciencePhotodetectorCONFINEMENTBlue shiftOptical oscillator strengthMaterials Science(all)Quantum confinement effectLight detectionQuantum confinementGeneral Materials ScienceLight absorptionPhotodetectorQuantum wellPotential wellNano ExpressPhoton absorptionSUPERLATTICESGermaniumbusiness.industryRoom temperature Amorphous filmInternal quantum efficiencyNANOCLUSTERSSemiconductor quantum wellCondensed Matter PhysicsPhotonNanostructuresBlueshiftAmorphous solidQuantum dotOptoelectronicsPHOTOLUMINESCENCEQuantum efficiencybusinessUltrathin films GermaniumGe quantum well
researchProduct

Results on radiation hardness of black silicon induced junction photodetectors from proton and electron radiation

2020

Abstract The stability of black silicon induced junction photodetectors under high-energy irradiation was tested with 11 MeV protons and 12 MeV electrons using fluence of 1 ⋅ 10 10 protons/cm2 and dose of 67 krad(Si) for protons and electrons, respectively. The energies and dose levels were selected to test radiation levels relevant for space applications. The degradation was evaluated through dark current and external quantum efficiency changes during (within 1 h after each step) and after (some days after) full irradiation sequences. Furthermore, the black silicon photodetectors were compared to planar silicon induced junction and planar silicon pn-junction photodetectors to assess the co…

Nuclear and High Energy PhysicsPassivationSiliconPhysics::Instrumentation and Detectorschemistry.chemical_element02 engineering and technology01 natural scienceschemistry.chemical_compound0103 physical sciencesRadiation damageElectron beam processingIrradiationInstrumentationPhysics010308 nuclear & particles physicsbusiness.industryBlack silicontechnology industry and agricultureequipment and supplies021001 nanoscience & nanotechnologySemiconductorchemistryOptoelectronicsQuantum efficiency0210 nano-technologybusinessNuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment
researchProduct

Seagrass ecosystem response to long-term high CO2 in a Mediterranean volcanic vent

2014

We examined the long-term effect of naturally acidified water on a Cymodocea nodosa meadow growing at a shallow volcanic CO2 vent in Vulcano Island (Italy). Seagrass and adjacent unvegetated habitats growing at a low pH station (pH = 7.65 ± 0.02) were compared with corresponding habitats at a control station (pH = 8.01 ± 0.01). Density and biomass showed a clear decreasing trend at the low pH station and the below- to above-ground biomass ratio was more than 10 times lower compared to the control. C content and delta 13C of leaves and epiphytes were significantly lower at the low pH station. Photosynthetic activity of C. nodosa was stimulated by low pH as seen by the significant increase in…

Ocean Acidification International Coordination Centre (OA-ICC)TemperateSalinityChlorophyll ainorganicAlkalinityLight saturation point standard errorPhotosynthetic quantum efficiencyMediterranean Sea Acidification in a Changing Climate MedSeATemperature waterCarbon inorganic dissolvedCalculated using seacarb after Nisumaa et al 2010IrradianceRespiration rate carbonAragonite saturation stateBiomassAlkalinity totalIrradiance standard errortotalCO2 ventCymodocea nodosapHRespirationEpiphytes loadMaximum photochemical quantum yield of photosystem II standard errorNet community production of carbonTemperaturePartial pressure of carbon dioxide (water) at sea surface temperature (wet air) standard errordissolvedRespiration rate carbon standard errorCarbonate ionMaximum photochemical quantum yield of photosystem IIPartial pressure of carbon dioxide (water) at sea surface temperature (wet air)Net community production of carbon standard errorIlluminance standard errorSoft bottom communitystandard errorCarbon inorganic dissolved standard errorRespiration rateElectron transport rate standard errorEarth System Researchδ13CPhotosynthetic quantum efficiency standard errorField observationChlorophyll a standard errorGross primary production of carbonBiomass standard errorCalcium carbonatePotentiometric titrationCalcite saturation stateShoot densityPotentiometricwaterIlluminanceOxygen standard errorBenthosAlkalinity total standard errorMediterranean Sea Acidification in a Changing Climate (MedSeA)Electron transport rateLight saturation pointOcean Acidification International Coordination Centre OA ICCMediterranean SeaGross primary production of carbon standard errorBicarbonate ionSoft-bottom communityδ13C standard errorTemperature water standard errorCalculated using seacarb after Nisumaa et al. (2010)Primary production PhotosynthesisSpeciespH standard errorCarbonate system computation flagloadPrimary production/PhotosynthesisFugacity of carbon dioxide (water) at sea surface temperature (wet air)CarbonBiomass/Abundance/Elemental compositionTreatmentEpiphytes load standard errorOxygenPartial pressure of carbon dioxide water at sea surface temperature wet airEpiphytes loadCarbon dioxideCarbon standard errorEntire communityFugacity of carbon dioxide water at sea surface temperature wet airGroupBiomass Abundance Elemental compositionCoast and continental shelfEpiphytesShoot density standard errorCalcium carbonate standard error
researchProduct

Dumbbell-Shaped Dinuclear Iridium Complexes and Their Application to Light-Emitting Electrochemical Cells

2010

A novel family of dumbbell- shaped dinuclear complexes in which an oligophenyleneethynylene spacer is linked to two heteroleptic iridiumA complexes is presented. The synthesis, as well as the electrochemical and pho- tophysical characterization of the new complexes, is reported. The experimen- tal results are interpreted with the help of density functional theory calcula- tions. From these studies we conclude that the lowest triplet excited state cor- responds to a 3 p-p* state located on the conjugated spacer. The presence of this state below the 3 MLCT/ 3 LLCT emitting states of the end-capping Ir III complexes explains the low quantum yields observed for the dinuclear com- plexes (one or…

Organic Chemistrychemistry.chemical_elementGeneral ChemistryConjugated systemElectroluminescenceElectrochemistryPhotochemistryCatalysischemistryExcited stateQuantum efficiencyDensity functional theoryIridiumDumbbellChemistry - A European Journal
researchProduct

Efficiency enhancement of organic light emitting diodes by NaOH surface treatment of the ITO anode

2009

Abstract Organic light emitting diodes (OLEDs) based on tris-(8-idroxyquinoline)aluminum (Alq 3 ) with enhanced efficiency are reported here. This is obtained by improving the charge carrier balance, through a preliminary NaOH surface treatment of the indium tin oxide (ITO) anode, in order to decrease its work function and, consequently, reduce the hole injection. The obtained devices exhibit a 1.36% external quantum efficiency and a 1.2 lm/W power efficiency at a current density of 60 mA/cm 2 . These values are more than double as compared with those of identical reference devices fabricated without the preliminary NaOH surface treatment.

Organic electronicsOrganic light emitting diodes (OLEDs)Materials sciencebusiness.industryEfficiencyCondensed Matter PhysicsTin oxideSettore ING-INF/01 - ElettronicaElectronic Optical and Magnetic MaterialsIndium tin oxideAnodeOpticsDevice fabrication techniqueITO surface treatmentWork function modificationMaterials ChemistryOLEDOptoelectronicsWork functionQuantum efficiencyElectrical and Electronic EngineeringbusinessCurrent density
researchProduct

Photoelectrical properties of thin films of DMABI derivatives

2011

Organic thin films with semiconducting properties have been intensively studied in nowadays due to very promising applications in organic electronics, for example, organic photovoltaic. Among organic semiconductors, group of indandiones with their photoelectrical properties, thermal and chemical stability are good candidates for use in design of novel molecular electronic devices. We have investigated photoconductivity quantum efficiency and its spectral dependence of two dimetilaminobenzylidene-1,3-indandione derivatives. Values of the photoconductivity threshold energy and optical energy gap are obtained. These results are compared with calculated transfer energy gap estimated according t…

Organic semiconductorOrganic electronicsCondensed Matter::Materials ScienceMaterials sciencebusiness.industryAb initio quantum chemistry methodsPhotoconductivityOptoelectronicsQuantum efficiencyChemical stabilityThin filmbusinessThreshold energyIOP Conference Series: Materials Science and Engineering
researchProduct

Bis(N-naphthyl-N-phenylamino)benzophenones as exciton-modulating materials for white TADF OLEDs with separated charge and exciton recombination zones

2022

Abstract Organic semiconductors were employed as exciton modulators, blue emitters, hole-transporting materials and hosts with resonant-appropriate singlet and triplet energies for efficient and stable white organic light emitting diodes (OLEDs). Two 4,4'-bis(N-naphthyl-N-phenylamino)benzophenones were synthesized using isomeric N-naphthyl-N-phenylamines as the donors and benzophenone as the acceptor moiety. Molecular design of new compounds allowed to obtain required combination of properties, i.e. blue prompt fluorescence in solid state with singlet energies close to those of the selected blue emitter exhibiting thermally activated delayed fluorescence (TADF), low triplet energies of 2.32…

Organic semiconductorResonant inductive couplingMaterials scienceProcess Chemistry and TechnologyGeneral Chemical EngineeringExcitonOLEDQuantum efficiencySinglet stateElectroluminescencePhotochemistryAcceptorDyes and Pigments
researchProduct

Up-conversion luminescence dependence on structure in zirconia nanocrystals

2013

The zirconia samples containing two different concentrations of Er and Yb dopants were prepared using the Sol–Gel method and up-conversion luminescence was studied using the time-resolved techniques. The up-conversion luminescence depends on the oxygen content in surrounding gasses during annealing as well as on the annealing temperature. These dependencies indicate that ZrO2 intrinsic defects annealing and generation, phase transition as well as dopant redistribution take place. The possible role of these processes on up-conversion luminescence is discussed. The results of experiments confirmed that the annealing temperature has a crucial influence on up-conversion luminescence for samples…

Phase transitionMaterials scienceDopantAnnealing (metallurgy)Organic ChemistryAnalytical chemistryMineralogyAtomic and Molecular Physics and OpticsGrain sizeElectronic Optical and Magnetic MaterialsInorganic ChemistryNanocrystalCubic zirconiaQuantum efficiencyElectrical and Electronic EngineeringPhysical and Theoretical ChemistryLuminescenceSpectroscopyOptical Materials
researchProduct

Low-Temperature Atomic Layer Deposition of Crystalline and Photoactive Ultrathin Hematite Films for Solar Water Splitting

2015

We developed a low-temperature atomic layer deposition route to deposit phase pure and crystalline hematite (alpha-Fe2O3) films at 230 degrees C without the need for postannealing. Homogenous and conformal deposition with good aspect ratio coverage was demonstrated on a nanostructured substrate and analyzed by transmission electron microscopy. These as-deposited alpha-Fe2O3 films were investigated as photoanodes for photoelectrochemical water oxidation and found to be highly photoactive. Combined with a TiO2 underlayer and a low-cost Ni(OH)(2) catalyst, hematite films of less than 10 nm in thickness reached photocurrent densities of 0.3 mA cm(-2) at 1.23 V vs RHE and a photocurrent onset po…

PhotocurrentMaterials scienceta114Annealing (metallurgy)underlayerDopingGeneral Engineeringphotoactive thin filmsGeneral Physics and AstronomyNanotechnologyHematitehematiteCatalysisAtomic layer depositionChemical engineeringTransmission electron microscopyvisual_artatomic layer depositionvisual_art.visual_art_mediumGeneral Materials ScienceQuantum efficiencyphotoelectrochemical water oxidationACS Nano
researchProduct