Search results for "Quantum technology"

showing 10 items of 78 documents

Scalable and effective multi-level entangled photon states: a promising tool to boost quantum technologies

2021

Abstract Multi-level (qudit) entangled photon states are a key resource for both fundamental physics and advanced applied science, as they can significantly boost the capabilities of novel technologies such as quantum communications, cryptography, sensing, metrology, and computing. The benefits of using photons for advanced applications draw on their unique properties: photons can propagate over long distances while preserving state coherence, and they possess multiple degrees of freedom (such as time and frequency) that allow scalable access to higher dimensional state encoding, all while maintaining low platform footprint and complexity. In the context of out-of-lab use, photon generation…

Photonintegrated and cost-efficient photonic platformComputer sciencephoton cluster statesQC1-999Context (language use)witness operatorsQuantum entanglementQuantum channelquantum photonicsphoton cluster stateRobustness (computer science)Electronic engineeringElectrical and Electronic EngineeringQCbusiness.industryexperimentally feasible entanglement characterizationPhysicsSettore ING-INF/02 - Campi Elettromagneticicomplex entanglementAtomic and Molecular Physics and OpticsElectronic Optical and Magnetic MaterialsQuantum technologyintegrated and cost-efficient photonic platformsPhotonicsbusinessquantum photonicBiotechnologyCoherence (physics)
researchProduct

Entanglement transfer, accumulation and retrieval via quantum-walk-based qubit-qudit dynamics

2020

The generation and control of quantum correlations in high-dimensional systems is a major challenge in the present landscape of quantum technologies. Achieving such non-classical high-dimensional resources will potentially unlock enhanced capabilities for quantum cryptography, communication and computation. We propose a protocol that is able to attain entangled states of $d$-dimensional systems through a quantum-walk-based {\it transfer \& accumulate} mechanism involving coin and walker degrees of freedom. The choice of investigating quantum walks is motivated by their generality and versatility, complemented by their successful implementation in several physical systems. Hence, given t…

Physical systemGeneral Physics and AstronomyFOS: Physical sciencesQuantum entanglementPhysics and Astronomy(all)Topology01 natural sciences010305 fluids & plasmasquantum information/dk/atira/pure/subjectarea/asjc/31000103 physical sciencesquantum walksQuantum walkentanglement accumulationQuantum information010306 general physicsQuantumPhysicsQuantum Physicsentanglement accumulation; entanglement transfer; high-dimensional entanglement; quantum walksTheoryofComputation_GENERALentanglement transferQuantum technologyQuantum cryptographyQubitentanglement transfer; entanglement accumulation; high-dimensional entanglement; quantum walksQuantum Physics (quant-ph)entanglementhigh-dimensional entanglement
researchProduct

Quantum dot state initialization by control of tunneling rates

2019

We study the loading of electrons into a quantum dot with dynamically controlled tunnel barriers. We introduce a method to measure tunneling rates for individual discrete states and to identify their relaxation paths. Exponential selectivity of the tunnel coupling enables loading into specific quantum dot states by tuning independently energy and rates. While for the single-electron case orbital relaxation leads to fast transition into the ground state, for electron pairs triplet-to-singlet relaxation is suppressed by long spin-flip times. This enables the fast gate-controlled initialization of either a singlet or a triplet electron pair state in a quantum dot with broad potential applicati…

PhysicsElectron pairCondensed Matter - Mesoscale and Nanoscale PhysicsFOS: Physical sciences02 engineering and technologyElectronCondensed Matter::Mesoscopic Systems and Quantum Hall Effect021001 nanoscience & nanotechnology01 natural sciencesMolecular physicsQuantum technologyQuantum dotMesoscale and Nanoscale Physics (cond-mat.mes-hall)0103 physical sciencesRelaxation (physics)Singlet state010306 general physics0210 nano-technologyGround stateQuantum tunnellingPhysical Review B
researchProduct

2017

Fast and reliable reset of a qubit is a key prerequisite for any quantum technology. For real world open quantum systems undergoing non-Markovian dynamics, reset implies not only purification, but in particular erasure of initial correlations between qubit and environment. Here, we derive optimal reset protocols using a combination of geometric and numerical control theory. For factorizing initial states, we find a lower limit for the entropy reduction of the qubit as well as a speed limit. The time-optimal solution is determined by the maximum coupling strength. Initial correlations, remarkably, allow for faster reset and smaller errors. Entanglement is not necessary.

PhysicsGeneral Physics and AstronomyQuantum PhysicsQuantum entanglement01 natural sciences010305 fluids & plasmasQuantum technologyQubit0103 physical sciencesKey (cryptography)Numerical controlErasureStatistical physics010306 general physicsReset (computing)QuantumNew Journal of Physics
researchProduct

Geometric quantum computation with Josephson qubits

2001

The quest for large scale integrability and flexibility has stimulated an increasing interest in designing quantum computing devices. A proposal based on small-capacitance Josephson junctions in the charge regime in which quantum gates are implemented by means of adiabatic geometric phases was discussed. The proposed works, are in the charge regime where the qubit is realized by two nearly degenerate charge states of a single electron box.

PhysicsJosephson effectQuantum networkEnergy Engineering and Power TechnologyHardware_PERFORMANCEANDRELIABILITYCondensed Matter PhysicsElectronic Optical and Magnetic MaterialsQuantum technologyQuantum error correctionCondensed Matter::SuperconductivityQuantum mechanicsHardware_INTEGRATEDCIRCUITSQuantum algorithmElectrical and Electronic EngineeringQuantum informationSuperconducting quantum computingHardware_LOGICDESIGNQuantum computer
researchProduct

Classical-to-quantum crossover in electron on-demand emission

2017

Emergence of a classical particle trajectory concept from the full quantum description is a key feature of quantum mechanics. Recent progress of solid state on-demand sources has brought single-electron manipulation into the quantum regime, however, the quantum-to-classical crossover remains unprobed. Here we describe theoretically a mechanism for generating single-electron wave packets by tunneling from a driven localized state, and show how to tune the degree of quantumness. Applying our theory to existing on-demand sources, we demonstrate the feasibility of an experimental investigation of quantum-to-classical crossover for single electrons, and open up yet unexplored potential for few-e…

PhysicsQuantum PhysicsCondensed Matter - Mesoscale and Nanoscale PhysicsWave packetCrossoverFOS: Physical sciences02 engineering and technologyElectron021001 nanoscience & nanotechnology01 natural sciencesQuantum technologyQuantum mechanicsOn demand0103 physical sciencesMesoscale and Nanoscale Physics (cond-mat.mes-hall)Particle trajectory010306 general physics0210 nano-technologyQuantum Physics (quant-ph)QuantumQuantum tunnelling
researchProduct

Generation of minimum energy entangled states

2020

Quantum technologies exploiting bipartite entanglement could be made more efficient by using states having the minimum amount of energy for a given entanglement degree. Here, we study how to generate these states in the case of a bipartite system of arbitrary finite dimension either by applying a unitary transformation to its ground state or through a zero-temperature thermalization protocol based on turning on and off a suitable interaction term between the subsystems. In particular, we explicitly identify three possible unitary operators and five possible interaction terms. On the one hand, two of the three unitary transformations turn out to be easily decomposable in terms of local eleme…

PhysicsQuantum PhysicsEnergyDegree (graph theory)Dimension (graph theory)FOS: Physical sciencesQuantum entanglementUnitary transformation01 natural sciencesUnitary state010305 fluids & plasmasEntanglementQuantum technology0103 physical sciencesBipartite graphStatistical physicsQuantum Physics (quant-ph)010306 general physicsGround stateGeneration of states
researchProduct

Device-independent quantum reading and noise-assisted quantum transmitters

2014

In quantum reading, a quantum state of light (transmitter) is applied to read classical information. In the presence of noise or for sufficiently weak signals, quantum reading can outperform classical reading by enhanced state distinguishability. Here we show that the enhanced quantum efficiency depends on the presence in the transmitter of a particular type of quantum correlations, the discord of response. Different encodings and transmitters give rise to different levels of efficiency. Considering noisy quantum probes we show that squeezed thermal transmitters with non-symmetrically distributed noise among the field modes yield a higher quantum efficiency compared to coherent thermal quan…

PhysicsQuantum PhysicsField (physics)TransmitterGeneral Physics and AstronomyFOS: Physical sciencesMathematical Physics (math-ph)Noise (electronics)Condensed Matter - Other Condensed MatterQuantum technologyQuantum stateQuantum mechanicsChernoff boundQuantum efficiencyQuantum Physics (quant-ph)QuantumMathematical PhysicsQCOther Condensed Matter (cond-mat.other)
researchProduct

Microwave-induced coupling of superconducting qubits

2008

We investigate the quantum dynamics of a system of two coupled superconducting qubits under microwave irradiation. We find that, with the qubits operated at the charge co-degeneracy point, the quantum evolution of the system can be described by a new effective Hamiltonian which has the form of two coupled qubits with tunable coupling between them. This Hamiltonian can be used for experimental tests on macroscopic entanglement and for implementing quantum gates.

PhysicsQuantum PhysicsQuantum networkCondensed Matter - Mesoscale and Nanoscale PhysicsCondensed Matter - SuperconductivityFOS: Physical sciencesQuantum PhysicsCondensed Matter PhysicsElectronic Optical and Magnetic MaterialsSuperconductivity (cond-mat.supr-con)Quantum technologyComputer Science::Emerging TechnologiesQuantum gateQuantum error correctionQuantum mechanicsMesoscale and Nanoscale Physics (cond-mat.mes-hall)Superconducting tunnel junctionW stateQuantum Physics (quant-ph)Superconducting quantum computingComputer Science::DatabasesTrapped ion quantum computerPhysical Review B
researchProduct

Localization and diffusion in Ising-type quantum networks

2001

We investigate the effect of phase randomness in Ising-type quantum networks. These networks model a large class of physical systems. They describe micro- and nanostructures or arrays of optical elements such as beam splitters (interferometers) or parameteric amplifiers. Most of these stuctures are promising candidates for quantum information processing networks. We demonstrate that such systems exhibit two very distinct types of behaviour. For certain network configurations (parameters), they show quantum localization similar to Anderson localization whereas classical stochastic behaviour is observed in other cases. We relate these findings to the standard theory of quantum localization.

PhysicsQuantum PhysicsQuantum networkQuantum dynamicsQuantum simulatorFOS: Physical sciencesQuantum channelAtomic and Molecular Physics and OpticsQuantum technologyOpen quantum systemQuantum mechanicsQuantum processQuantum algorithmStatistical physicsQuantum Physics (quant-ph)
researchProduct