Search results for "Quinone"

showing 10 items of 315 documents

Enantioselective synthesis of 4H-pyranonaphthoquinones via sequential squaramide and silver catalysis

2015

Chemical communications 52(8), 1669-1672(2016). doi:10.1039/C5CC09592A

010402 general chemistry01 natural sciencescatalystsCatalysisCatalysisMichael additionMaterials ChemistryOrganic chemistryenantioselective synthesista116Hydroalkoxylation010405 organic chemistryChemistryMetals and AlloysSquaramideEnantioselective synthesisGeneral Chemistry540hydroalkoxylation0104 chemical sciencesSurfaces Coatings and FilmsElectronic Optical and Magnetic Materialspyranonaphthoquinonesddc:540Ceramics and CompositesMichael reactionChemical Communications
researchProduct

One-Pot Synthesis to Quinone-Based Diaza[3.3]cyclophanes

2017

A simple one-pot synthesis to [3.3]cyclophanes that involves quinone moieties was found. The protocol tolerates a variety of amines that include aliphatic and aromatic structures with different functional groups, such as hydroxy groups, amides, and terminal double and triple bonds. The straightforward synthesis can be performed by a twofold N-alkylation reaction with 2,5-bis(bromomethyl)-3,6-dimethyl-1,4-benzoquinone (1). Neither anhydrous nor inert conditions are required. Various amines can be employed without any activating groups, several functionalities at end groups are tolerated, and the cyclophanes generated can be easily modified or embedded into larger molecular architectures. The…

010405 organic chemistryChemistryOrganic ChemistryOne-pot synthesisfood and beveragesAlkylation010402 general chemistryTriple bond01 natural sciences0104 chemical sciencesQuinonechemistry.chemical_compoundAnhydrousOrganic chemistryAmine gas treatingPhysical and Theoretical ChemistryCyclophaneEuropean Journal of Organic Chemistry
researchProduct

The Water to Water Cycles in Microalgae.

2016

In oxygenic photosynthesis, light produces ATP plus NADPH via linear electron transfer, i.e. the in-series activity of the two photosystems: PSI and PSII. This process, however, is thought not to be sufficient to provide enough ATP per NADPH for carbon assimilation in the Calvin-Benson-Bassham cycle. Thus, it is assumed that additional ATP can be generated by alternative electron pathways. These circuits produce an electrochemical proton gradient without NADPH synthesis, and, although they often represent a small proportion of the linear electron flow, they could have a huge importance in optimizing CO2 assimilation. In Viridiplantae, there is a consensus that alternative electron flow comp…

0106 biological sciences0301 basic medicineLightPhysiology[SDV]Life Sciences [q-bio]Cell RespirationMehler reactionPlastoquinonePlant ScienceWater to water cyclesPhotosynthesis01 natural sciences03 medical and health scienceschemistry.chemical_compoundWater CycleMicroalgaePhotosynthesisElectrochemical gradientPhotosystemOrganellesbiologyChemistryElectron transportRuBisCOfood and beveragesCell BiologyGeneral MedicineElectron transport chain030104 developmental biologybiology.proteinBiophysicsPhotorespirationOxidoreductases010606 plant biology & botanyPlantcell physiology
researchProduct

The antioxidant 2,3‐dichloro,5,8‐dihydroxy,1,4‐naphthoquinone inhibits acetyl‐cholinesterase activity and amyloid β 42 aggregation: A dual target the…

2020

Alzheimer's disease is characterized by amyloid β aggregation and cholinergic neurodegeneration. In the present study, pure DDN (2,3-dichloro-5,8-dihydroxy-1,4-naphthoquinone) was examined, for the first time, for its dual potential as inhibitor of acetylcholinesterase (AChE) and Aβ42 aggregation. Such investigation was encouraged by the in vitro high antioxidant potential of DDN. Indeed, it revealed interesting antioxidant activity with IC50 values of 9.8 and 4.3 µM for ABTS and reducing power, respectively. The ability of DDN to counteract Aβ42 aggregation was evaluated by thioflavine-T assay. Strong inhibition of Aβ42 aggregation of more than 90% at 25 µM was measured. Moreover, results …

0106 biological sciencesAntioxidantAchémedicine.medical_treatmentBiomedical EngineeringBioengineering14-Naphthoquinone01 natural sciencesApplied Microbiology and Biotechnology03 medical and health scienceschemistry.chemical_compound010608 biotechnologyDrug DiscoverymedicineIC50030304 developmental biology0303 health sciencesABTSChemistryProcess Chemistry and TechnologyNeurodegenerationGeneral Medicinemedicine.diseaseAcetylcholinesteraselanguage.human_languageIn vitroBiochemistrylanguageMolecular MedicineBiotechnologyBiotechnology and Applied Biochemistry
researchProduct

Effect of hydrogen peroxide on the dehydrogenase and quinone-reductase activity of irradiated Lactobacillus plantarum cells

2020

Abstract The resistance of lactobacilli to oxidative stress is of great importance for their applicability as probiotics. This study aimed to evaluate the response of Lactobacillus plantarum strain ATCC® 14917™, grown in either de Man, Rogosa, and Sharpe agar (MRS medium) or tryptic soy broth (TSB medium), to 1–2 mM H2O2 after the exposure to different doses of ionising radiation. Two bacterial extracellular enzyme groups, dehydrogenases (DHAs) and quinone reductases (QRs), served as the criteria of viability and antioxidant activity, respectively. The irradiated L. plantarum culture grown in TSB showed increased QR activity at irradiation doses of 2–50 Gy, with the maximum activity at 10 G…

0106 biological sciencesAntioxidantfood.ingredientmedicine.medical_treatmentDehydrogenase01 natural sciencesTryptic soy brothchemistry.chemical_compound0404 agricultural biotechnologyfoodQuinone Reductases010608 biotechnologymedicineAgarFood scienceHydrogen peroxidechemistry.chemical_classificationbiologyfood and beverages04 agricultural and veterinary sciencesbiology.organism_classification040401 food scienceEnzymechemistryLactobacillus plantarumFood ScienceLWT
researchProduct

Aging-Related Disorders and Mitochondrial Dysfunction: A Critical Review for Prospect Mitoprotective Strategies Based on Mitochondrial Nutrient Mixtu…

2020

A number of aging-related disorders (ARD) have been related to oxidative stress (OS) and mitochondrial dysfunction (MDF) in a well-established body of literature. Most studies focused on cardiovascular disorders (CVD), type 2 diabetes (T2D), and neurodegenerative disorders. Counteracting OS and MDF has been envisaged to improve the clinical management of ARD, and major roles have been assigned to three mitochondrial cofactors, also termed mitochondrial nutrients (MNs), i.e., alpha-lipoic acid (ALA), Coenzyme Q10 (CoQ10), and carnitine (CARN). These cofactors exert essential-and distinct-roles in mitochondrial machineries, along with strong antioxidant properties. Clinical trials have mostly…

0301 basic medicineAgingAntioxidantUbiquinonemedicine.medical_treatmentmitochondrial nutrientsReviewoptic neuropathiesType 2 diabetesPharmacologyMitochondrionmedicine.disease_causeAntioxidantslcsh:Chemistrychemistry.chemical_compound0302 clinical medicineCardiovascular Diseaseoxidative stressaging-related disorderslcsh:QH301-705.5SpectroscopyThioctic AcidMitochondrial nutrientNeurodegenerative DiseasesGeneral MedicineComputer Science ApplicationsMitochondriaCardiovascular DiseasesAntioxidantmedicine.drugHumanCatalysisAging-related disorderCell LineInorganic Chemistry03 medical and health sciencesCarnitinemedicineAnimalsHumansMicrobiomeCarnitinePhysical and Theoretical ChemistryMolecular BiologyCoenzyme Q10business.industryAnimalOrganic ChemistryOxidative Stremedicine.diseaseClinical trial030104 developmental biologylcsh:Biology (General)lcsh:QD1-999chemistryDiabetes Mellitus Type 2MicrobiomeOptic neuropathiebusinessMitochondrial dysfunction030217 neurology & neurosurgeryOxidative stress
researchProduct

Thymoquinone as a Potential Adjuvant Therapy for Cancer Treatment: Evidence from Preclinical Studies

2017

Thymoquinone (TQ), the main bioactive component of Nigella sativa, has been found to exhibit anticancer effects in numerous preclinical studies. Due to its multitargeting nature, TQ interferes in a wide range of tumorigenic processes and counteracts carcinogenesis, malignant growth, invasion, migration, and angiogenesis. Moreover, TQ can specifically sensitize tumor cells toward conventional cancer treatments (e.g., radiotherapy, chemotherapy, and immunotherapy) and simultaneously minimize therapy-associated toxic effects in normal cells. In this review, we summarized the adjuvant potential of TQ as observed in various in vitro and in vivo animal models and discussed the pharmacological pro…

0301 basic medicineAngiogenesismedicine.medical_treatmentthymoquinoneReviewPharmacologycancer treatment03 medical and health scienceschemistry.chemical_compound0302 clinical medicineAdjuvant therapyMedicinePharmacology (medical)preclinical studiesThymoquinonePharmacologyChemotherapybusiness.industrylcsh:RM1-950Canceradjuvant therapyImmunotherapymedicine.diseaseRadiation therapylcsh:Therapeutics. Pharmacology030104 developmental biologychemistry030220 oncology & carcinogenesisCancer researchbusinessAdjuvantFrontiers in Pharmacology
researchProduct

Marine Actinomycetes-Derived Secondary Metabolites Overcome TRAIL-Resistance via the Intrinsic Pathway through Downregulation of Survivin and XIAP

2020

Resistance of cancer cells to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis represents the major hurdle to the clinical use of TRAIL or its derivatives. The discovery and development of lead compounds able to sensitize tumor cells to TRAIL-induced cell death is thus likely to overcome this limitation. We recently reported that marine actinomycetes&rsquo

0301 basic medicineAquatic OrganismsProgrammed cell deathCell SurvivalSurvivinDown-RegulationSecondary MetabolismX-Linked Inhibitor of Apoptosis ProteinTRAILJurkat cellsArticleTNF-Related Apoptosis-Inducing LigandJurkat Cells03 medical and health sciences0302 clinical medicinemarine actinomycetesDownregulation and upregulationDrug DiscoveryOxazinesSurvivinHumans[SDV.BBM]Life Sciences [q-bio]/Biochemistry Molecular BiologyFADDBenzopyreneslcsh:QH301-705.5ComputingMilieux_MISCELLANEOUSCaspase 8therapybiologyChemistryProdigiosinQuinonesapoptosisGeneral MedicineHCT116 Cells3. Good healthXIAPActinobacteria030104 developmental biologylcsh:Biology (General)Drug Resistance NeoplasmApoptosis030220 oncology & carcinogenesisCancer cellbiology.proteinCancer researchGene DeletionCells
researchProduct

Friedreich Ataxia: current state-of-the-art, and future prospects for mitochondrial-focused therapies

2021

Friedreichs Ataxia is an autosomal recessive genetic disease causing the defective gene product, frataxin. A body of literature has been focused on the attempts to counteract frataxin deficiency and the consequent iron imbalance, in order to mitigate the disease-associated prooxidant state and clinical course. The present mini review is aimed at evaluating the basic and clinical reports on the roles and the use of a set of iron chelators, antioxidants and some cofactors involved in the key mitochondrial functions. Extensive literature has focused on the protective roles of iron chelators, coenzyme Q10 and analogs, and vitamin E, altogether with varying outcomes in clinical studies. Other st…

0301 basic medicineAtaxiaUbiquinoneAlpha-Lipoic AcidDiseaseMitochondrionIron Chelating AgentsBioinformaticsAntioxidantsLinoleic Acid03 medical and health scienceschemistry.chemical_compound0302 clinical medicineCarnitinePhysiology (medical)AnimalsHumansMedicineDeferiproneCarnitineInner mitochondrial membraneCoenzyme Q10biologyAnimalbusiness.industryBiochemistry (medical)Public Health Environmental and Occupational HealthGeneral MedicineMitochondriaIron Chelating Agent030104 developmental biologyLinoleic AcidschemistryFriedreich Ataxia030220 oncology & carcinogenesisFrataxinbiology.proteinAntioxidantmedicine.symptombusinessHumanmedicine.drugTranslational Research
researchProduct

Comparative study of eco- and cytotoxicity during biotransformation of anthraquinone dye Alizarin Blue Black B in optimized cultures of microscopic f…

2017

The aim of this study was to select optimal conditions (C and N sources, initial pH and temperature) for biodecolorization of 0.03% anthraquinone dye Alizarin Blue Black B (ABBB) by microscopic fungi: Haematonectria haematococca BwIII43, K37 and Trichoderma harzianum BsIII33. The phenolic compounds, phytotoxicity (Lepidium sativum L.), biotoxicity (Microtox), cytotoxicity and yeast viability assay were performed to determine the extent of ABBB detoxification. Biodecolorization and detoxification of 0.03% ABBB in H. haematococca BwIII43 and T. harzianum BsIII33 cultures was correlated with extracellular oxidoreductases activity. In turn, secondary products, toxic to human fibroblasts and res…

0301 basic medicineCell SurvivalHealth Toxicology and MutagenesisAnthraquinones010501 environmental sciencesAlizarin01 natural sciencesLepidium sativumCell LineWater Purification03 medical and health scienceschemistry.chemical_compoundBiotransformationYeastsToxicity TestsHumansBiodecolorizationViability assayColoring AgentsCytotoxicityBiotransformationYeast model0105 earth and related environmental sciencesbiologyProoxidative toxicityPublic Health Environmental and Occupational HealthTrichoderma harzianumGeneral Medicinebiology.organism_classificationPollutionYeastHaematonectria haematococcaBiodegradation Environmental030104 developmental biologyBiochemistrychemistryPhytotoxicityDetoxificationOxidoreductasesOxidation-ReductionWater Pollutants ChemicalEcotoxicology and Environmental Safety
researchProduct