Search results for "RAMAN"

showing 10 items of 1328 documents

High-pressure study of the infrared active modes in wurtzite and rocksalt ZnO

2011

International audience; We present a high-pressure study of ZnO carried out in the mid- to far-infrared frequency domain with the aim of characterizing the optic modes of wurtzite and rocksalt ZnO. We obtained the pressure coefficients of the E1(TO), E1(LO), A1(TO), and A1(LO) modes of the low-pressure wurtzite phase and compare them with previous Raman measurements. The optical modes of the high-pressure rocksalt phase are infrared active, so we were able to determine their wave numbers and pressure dependencies. In the wurtzite phase, high pressure induces a slight decrease in both longitudinal and transverse effective charges. The decrease is more pronounced in the rocksalt phase.

010302 applied physicsMaterials scienceCondensed matter physicsInfraredbusiness.industry02 engineering and technology021001 nanoscience & nanotechnologyCondensed Matter Physics01 natural sciencesElectronic Optical and Magnetic MaterialsTransverse planesymbols.namesakeSemiconductorOpticsFrequency domainPhase (matter)[PHYS.COND.CM-GEN]Physics [physics]/Condensed Matter [cond-mat]/Other [cond-mat.other]0103 physical sciencessymbolsPACS : 78.30.Fs 64.70.kgWavenumber0210 nano-technologyRaman spectroscopybusinessWurtzite crystal structure
researchProduct

Acoustic vibrations of monoclinic zirconia nanocrystals

2011

International audience; Polarized low-frequency Raman spectra originating from confined acoustic vibrations are reported for monoclinic ZrO2 nanoparticles with a narrow size distribution synthesized from a continuous supercritical water process. The monoclinic lattice structure is taken into account for the interpretation of the spectra by comparing with isotropic and anisotropic continuum elasticity calculations for monodomain nanocrystals. The various mechanisms leading to the broadening of the Raman peaks are discussed. We demonstrate that an accurate determination of the size distribution of the nanoparticles is possible using the Raman peak due to the fundamental breathing vibration wh…

010302 applied physicsMaterials scienceCondensed matter physicsIsotropy[ PHYS.COND.CM-MS ] Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci]02 engineering and technologyCrystal structure021001 nanoscience & nanotechnology01 natural sciencesSpectral lineSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsCrystallographysymbols.namesakeGeneral Energy0103 physical sciencessymbols[PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci]Cubic zirconiaPhysical and Theoretical ChemistryElasticity (economics)0210 nano-technologyAnisotropyRaman spectroscopyMonoclinic crystal system
researchProduct

The influence of Cr and Ni doping on the microstructure of oxygen containing diamond-like carbon films

2021

Abstract Non-hydrogenated diamond-like carbon (DLC) films doped with metals and oxygen were deposited by direct current magnetron sputtering. The influence of chromium and nickel on the surface morphology, elemental composition, bonding structure, adhesion force, optical transmittance and nanohardness of the films was characterized by atomic force microscopy (AFM), energy dispersive X-ray spectroscopy (EDX), multi-wavelength Raman spectroscopy, UV–VIS–NIR spectrophotometry and nanoindenter. The surface roughness was reduced with the addition of Cr (7.4 at. %) or Ni (8.9 at. %) into DLC films. The EDX measurements indicated that the addition of Cr increased the oxygen content by ~37%, while …

010302 applied physicsMaterials scienceDiamond-like carbonDopingAnalytical chemistrychemistry.chemical_element02 engineering and technology021001 nanoscience & nanotechnologyCondensed Matter PhysicsMicrostructure01 natural sciencesSurfaces Coatings and FilmsChromiumNickelsymbols.namesakechemistry0103 physical sciencessymbolsSurface roughness0210 nano-technologyRaman spectroscopyInstrumentationCarbonVacuum
researchProduct

Static and dynamic structure of $ZnWO_4$ nanoparticles

2011

Abstract Static and dynamic structure of ZnWO 4 nanoparticles, synthesized by co-precipitation technique, has been studied by temperature dependent x-ray absorption spectroscopy at the Zn K-edge and W L 3 -edge. Complementary experimental techniques, such as x-ray powder diffraction, Raman and photoluminescence spectroscopies, have been used to understand the variation of vibrational, optical, and structural properties of nanoparticles, compared to microcrystalline ZnWO 4 . Our results indicate that the structure of nanoparticles experiences strong relaxation leading to the significant distortions of the WO 6 and ZnO 6 octahedra, being responsible for the changes in optical and vibrational …

010302 applied physicsMaterials sciencePhotoluminescenceAbsorption spectroscopyExtended X-ray absorption fine structureAnalytical chemistryNanoparticle02 engineering and technology021001 nanoscience & nanotechnologyCondensed Matter Physics01 natural sciencesElectronic Optical and Magnetic Materialssymbols.namesakeMicrocrystalline0103 physical sciencesX-ray crystallographyMaterials ChemistryCeramics and Compositessymbolsddc:6600210 nano-technologyRaman spectroscopyPowder diffraction
researchProduct

Ab initio calculations of structural, electronic and vibrational properties of BaTiO3 and SrTiO3 perovskite crystals with oxygen vacancies

2020

The first-principles (ab initio) computations of the structural, electronic, and phonon properties have been performed for cubic and low-temperature tetragonal phases of BaTiO3 and SrTiO3 perovskite crystals, both stoichiometric and non-stoichiometric (with neutral oxygen vacancies). Calculations were performed with the CRYSTAL17 computer code within the linear combination of atomic orbitals approximation, using the B1WC advanced hybrid exchange-correlation functional of the density-functional-theory (DFT) and the periodic supercell approach. Various possible spin states of the defective systems were considered by means of unrestricted (open shell) DFT calculations. It was demonstrated that…

010302 applied physicsMaterials sciencePhysics and Astronomy (miscellaneous)Spin statesAb initioGeneral Physics and Astronomy01 natural sciencesMolecular physicsCondensed Matter::Materials Sciencesymbols.namesakeAb initio quantum chemistry methodsLinear combination of atomic orbitalsVacancy defect0103 physical sciencesPhysics::Atomic and Molecular Clusterssymbols010306 general physicsRaman spectroscopyOpen shellPerovskite (structure)Low Temperature Physics
researchProduct

Raman characterization of Pb2Na1−xLaxNb5−xFexO15 and Pb0.5(5−x)LaxNb5−xFexO15 (0≤x≤1) solid solutions

2011

Abstract The ferroelectric compounds Pb 2 Na 1− x La x Nb 5− x Fe x O 15 and Pb 0.5(5− x ) La x Nb 5− x Fe x O 15 (0≤ x ≤1) with the tungsten bronze type structure have been investigated using Raman spectroscopy. The evolution of the spectra as a function of composition at room temperature is reported. In the frequency range 200–1000 cm −1 three main A 1 phonons around 240 ( υ 1 ), 630 ( υ 2 ) and 816 ( υ 3 ) cm −1 were observed. The broadening of the Raman lines for high values of x originates from a significant structural disorder. This is in good agreement with the relaxor character of these compositions. The lowest-frequency part of the spectra, below 180 cm −1 , reveals a structural ch…

010302 applied physicsMaterials science[ PHYS.COND.CM-MS ] Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci]Analytical chemistrychemistry.chemical_element02 engineering and technologyAtmospheric temperature rangeTungsten021001 nanoscience & nanotechnologyCondensed Matter Physics01 natural sciencesFerroelectricitySpectral lineElectronic Optical and Magnetic Materialssymbols.namesakechemistry0103 physical sciences[PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci]symbolsElectrical and Electronic Engineering0210 nano-technologySpectroscopyRaman spectroscopyRaman scatteringSolid solutionPhysica B: Condensed Matter
researchProduct

Influence of Sr addition on structural, dielectric and Raman properties of Na0.5Bi0.5TiO3ceramics

2016

ABSTRACTLead free (Na0.5Bi0.5)1-xSrxTiO3 (x = 0, 0.01 and 0.02) ceramics were produced by a conventional solid-state sintering method. X-ray diffraction analysis shows that the obtained samples possess the perovskite structure with rhombohedral symmetry. The microstructure study shows a dense structure, in agreement with the relative density (above 97%). Dielectric analysis revealed the diffuse character of the electric permittivity anomalies and their shift to a lower temperature range after Sr doping of NBT. The Raman spectra are similar for all samples in agreement with the X-ray diffraction data. The possible origin of the observed effects was discussed.

010302 applied physicsPermittivityDiffractionMaterials scienceDopingAnalytical chemistrySintering02 engineering and technologyDielectric021001 nanoscience & nanotechnologyCondensed Matter PhysicsMicrostructure01 natural sciencesElectronic Optical and Magnetic Materialssymbols.namesakeControl and Systems Engineering0103 physical sciencesMaterials ChemistryCeramics and CompositessymbolsRelative densityElectrical and Electronic Engineering0210 nano-technologyRaman spectroscopyIntegrated Ferroelectrics
researchProduct

Raman spectra and anomalies of dielectric properties and thermal expansion of lead-free (1−x)Na0.5Bi0.5TiO3-xSrTiO3 (x = 0, 0.08 and 0.1) ceramics

2016

ABSTRACTThermal expansion, Raman and dielectric properties of the lead-free (1−x)Na0.5Bi0.5TiO3-xSrTiO3 (x = 0, 0.08 and 0.1) ceramic solid solutions, fabricated by the conventional solid-state reaction method, were investigated. The Sr-doping results in an increase of the dielectric permittivity, broadening of the permittivity maximum, enhancement of the relaxation near depolarization temperature, broadening of the Raman bands and shift of all anomalies toward lower temperatures. The observed effects are attributed to an increase of the degree of cationic disorder and enhancement of the relaxor-like features. Anomalies in the thermal expansion strain were observed at the temperatures corre…

010302 applied physicsPermittivityPhase transitionMaterials scienceCondensed matter physicsRelaxation (NMR)02 engineering and technologyDielectric021001 nanoscience & nanotechnology01 natural sciencesThermal expansionTetragonal crystal systemsymbols.namesakePhase (matter)0103 physical sciencessymbolsGeneral Materials Science0210 nano-technologyRaman spectroscopyInstrumentationPhase Transitions
researchProduct

Dielectric, thermal and Raman spectroscopy studies of lead-free (Na0.5Bi0.5)1−xSrxTiO3 (x = 0, 0.04 and 0.06) ceramics

2016

ABSTRACTLead-free (Na0.5Bi0.5)1−xSrxTiO3 (x = 0, 0.04 and 0.06) ceramics with relative densities above 97% were prepared by solid-state synthesis process. Their dielectric, thermal and Raman properties were studied. X-ray diffraction analysis shows perovskite structure with rhombohedral symmetry at room temperature. Sr doping of Na0.5Bi0.5TiO3 (NBT) results in an increase of the dielectric permittivity, diffusing of the permittivity maximum and its shift toward lower temperatures. The temperature of the rhombohedral–tetragonal phase transition indicated by the differential scanning calorimetry (DSC) peak and relaxational dielectric anomaly near the depolarization temperature are also shifte…

010302 applied physicsPermittivityPhase transitionMaterials scienceDopingAnalytical chemistry02 engineering and technologyDielectric021001 nanoscience & nanotechnology01 natural sciencessymbols.namesakeDifferential scanning calorimetryvisual_art0103 physical sciencesvisual_art.visual_art_mediumsymbolsRelaxation (physics)General Materials ScienceCeramic0210 nano-technologyRaman spectroscopyInstrumentationPhase Transitions
researchProduct

Luminescence of polymorphous SiO2

2016

Abstract The luminescence of self-trapped exciton (STE) was found and systematically studied in tetrahedron structured silica crystals (α-quartz, coesite, cristobalite) and glass. In octahedron structured stishovite only host material defect luminescence was observed. It strongly resembles luminescence of oxygen deficient silica glass and γ or neutron irradiated α-quartz. The energetic yield of STE luminescence for α-quartz and coesite is about 20% of absorbed energy and about 5(7)% for cristobalite. Two types of STE were found in α-quartz. Two overlapping bands of STEs are located at 2.5–2.7 eV. The model of STE is proposed as Si–O bond rupture, relaxation of created non-bridging oxygen (N…

010302 applied physicsRadiationMaterials scienceMineralogy02 engineering and technologyElectronic structureengineering.material021001 nanoscience & nanotechnology01 natural sciencesCristobalitesymbols.namesakeCrystallographyOctahedron0103 physical sciencesCoesitesymbolsengineering0210 nano-technologyRaman spectroscopyLuminescenceInstrumentationStishoviteNatural bond orbitalRadiation Measurements
researchProduct