Search results for "RENORMALIZATION-GROUP"
showing 9 items of 9 documents
Structure of longitudinal chromomagnetic fields in high energy collisions
2014
We compute expectation values of spatial Wilson loops in the forward light cone of high-energy collisions. We consider ensembles of gauge field configurations generated from a classical Gaussian effective action as well as solutions of high-energy renormalization group evolution with fixed and running coupling. The initial fields correspond to a color field condensate exhibiting domain-like structure over distance scales of order the saturation scale. At later times universal scaling emerges at large distances for all ensembles, with a nontrivial critical exponent. Finally, we compare the results for the Wilson loop to the two-point correlator of magnetic fields.
Use of a running coupling in the NLO calculation of forward hadron production
2018
We address and solve a puzzle raised by a recent calculation [1] of the cross-section for particle production in proton-nucleus collisions to next-to-leading order: the numerical results show an un- reasonably large dependence upon the choice of a prescription for the QCD running coupling, which spoils the predictive power of the calculation. Specifically, the results obtained with a prescription formulated in the transverse coordinate space differ by one to two orders of magnitude from those obtained with a prescription in momentum space. We show that this discrepancy is an artefact of the interplay between the asymptotic freedom of QCD and the Fourier transform from coordinate space to mo…
Consistency of the triplet seesaw model revisited
2015
14 pages.- 5 figures
The 1-loop effective potential for the Standard Model in curved spacetime
2018
The renormalisation group improved Standard Model effective potential in an arbitrary curved spacetime is computed to one loop order in perturbation theory. The loop corrections are computed in the ultraviolet limit, which makes them independent of the choice of the vacuum state and allows the derivation of the complete set of $\beta$-functions. The potential depends on the spacetime curvature through the direct non-minimal Higgs-curvature coupling, curvature contributions to the loop diagrams, and through the curvature dependence of the renormalisation scale. Together, these lead to significant curvature dependence, which needs to be taken into account in cosmological applications, which i…
Nonequilibrium critical scaling in quantum thermodynamics
2016
The emerging field of quantum thermodynamics is contributing important results and insights into archetypal many-body problems, including quantum phase transitions. Still, the question whether out-of-equilibrium quantities, such as fluctuations of work, exhibit critical scaling after a sudden quench in a closed system has remained elusive. Here, we take a novel approach to the problem by studying a quench across an impurity quantum critical point. By performing density matrix renormalization group computations on the two-impurity Kondo model, we are able to establish that the irreversible work produced in a quench exhibits finite-size scaling at quantum criticality. This scaling faithfully …
Relative importance of second-order terms in relativistic dissipative fluid dynamics
2014
[Introduction] In Denicol et al. [Phys. Rev. D 85 , 114047 (2012)], the equations of motion of relativistic dissipative fluid dynamics were derived from the relativistic Boltzmann equation. These equations contain a multitude of terms of second order in the Knudsen number, in the inverse Reynolds number, or their product. Terms of second order in the Knudsen number give rise to nonhyperbolic (and thus acausal) behavior and must be neglected in (numerical) solutions of relativistic dissipative fluid dynamics. The coefficients of the terms which are of the order of the product of Knudsen and inverse Reynolds numbers have been explicitly computed in the above reference, in the limit of a massl…
JIMWLK evolution of the odderon
2016
We study the effects of a parity-odd "odderon" correlation in JIMWLK renormalization group evolution at high energy. Firstly we show that in the eikonal picture where the scattering is described by Wilson lines, one obtains a strict mathematical upper limit for the magnitude of the odderon amplitude compared to the parity even pomeron one. This limit increases with N_c, approaching infinity in the infinite N_c limit. We use a systematic extension of the Gaussian approximation including both 2- and 3-point correlations which enables us to close the system of equations even at finite N_c. In the large-N_c limit we recover an evolution equation derived earlier. By solving this equation numeric…
The Hunt for New Physics at the Large Hadron Collider
2010
233 páginas.-- AHEP Group: et al..-- El Pdf del artículo es la versión pre-print: arXiv.1001.2693v1.-- Trabajo presentado al "The International Workshop on Beyond the Standard Model Physics and LHC Signatures (BSM-LHC) celebrado en Boston (USA) del 2 al 4 de junio de 2009.
Up, down, strange and charm quark masses with N-f=2+1+1 twisted mass lattice QCD
2014
We present a lattice QCD calculation of the up, down, strange and charm quark masses performed using the gauge configurations produced by the European Twisted Mass Collaboration with N-f = 2 + 1 + 1 dynamical quarks, which include in the sea, besides two light mass degenerate quarks, also the strange and charm quarks with masses close to their physical values. The simulations are based on a unitary setup for the two light quarks and on a mixed action approach for the strange and charm quarks. The analysis uses data at three values of the lattice spacing and pion masses in the range 210-450 MeV, allowing for accurate continuum limit and controlled chiral extrapolation. The quark mass renorma…