Search results for "RENORMALIZATION"

showing 10 items of 470 documents

Investigating the Ultraviolet Properties of Gravity with a Wilsonian Renormalization Group Equation

2008

We review and extend in several directions recent results on the asymptotic safety approach to quantum gravity. The central issue in this approach is the search of a Fixed Point having suitable properties, and the tool that is used is a type of Wilsonian renormalization group equation. We begin by discussing various cutoff schemes, i.e. ways of implementing the Wilsonian cutoff procedure. We compare the beta functions of the gravitational couplings obtained with different schemes, studying first the contribution of matter fields and then the so-called Einstein-Hilbert truncation, where only the cosmological constant and Newton's constant are retained. In this context we make connection with…

High Energy Physics - TheoryPhysicsAsymptotic safety in quantum gravityGeneral Physics and AstronomyFOS: Physical sciencesCosmological constantGeneral Relativity and Quantum Cosmology (gr-qc)Renormalization groupFixed pointGeneral Relativity and Quantum CosmologyGravitationHigh Energy Physics - Theory (hep-th)Quantum gravityConstant (mathematics)Scalar curvatureMathematical physics
researchProduct

Comment on “Topological invariants, instantons, and the chiral anomaly on spaces with torsion”

1999

In Riemann-Cartan spacetimes with torsion only its axial covector piece $A$ couples to massive Dirac fields. Using renormalization group arguments, we show that besides the familiar Riemannian term only the Pontrjagin type four-form $dA\wedge dA$ does arise additionally in the chiral anomaly, but not the Nieh-Yan term $d^\star A$, as has been claimed in a recent paper [PRD 55, 7580 (1997)].

High Energy Physics - TheoryPhysicsChiral anomalyNuclear and High Energy PhysicsInstantonFOS: Physical sciencesGeneral Relativity and Quantum Cosmology (gr-qc)Renormalization groupWedge (geometry)General Relativity and Quantum CosmologyHigh Energy Physics - Theory (hep-th)Quantum mechanicsLinear formTorsion (algebra)Topological invariantsMathematical physicsPhysical Review D
researchProduct

Polyakov effective action from functional renormalization group equation

2010

We discuss the Polyakov effective action for a minimally coupled scalar field on a two dimensional curved space by considering a non-local covariant truncation of the effective average action. We derive the flow equation for the form factor in $\int\sqrt{g}R c_{k}(\Delta)R$, and we show how the standard result is obtained when we integrate the flow from the ultraviolet to the infrared.

High Energy Physics - TheoryPhysicsFOS: Physical sciencesGeneral Physics and AstronomyGeneral Relativity and Quantum Cosmology (gr-qc)Renormalization groupGeneral Relativity and Quantum CosmologyAction (physics)High Energy Physics - Theory (hep-th)Flow (mathematics)Functional renormalization groupCovariant transformationCurved spaceEffective actionScalar fieldMathematical physicsAnnals of Physics
researchProduct

Differential Regularization of a Non-relativistic Anyon Model

1994

Differential regularization is applied to a field theory of a non-relativistic charged boson field $\phi$ with $\lambda (\phi {}^{*} \phi)^2$ self-interaction and coupling to a statistics-changing $U(1)$ Chern-Simons gauge field. Renormalized configuration-space amplitudes for all diagrams contributing to the $\phi {}^{*} \phi {}^{*} \phi \phi$ 4-point function, which is the only primitively divergent Green's function, are obtained up to 3-loop order. The renormalization group equations are explicitly checked, and the scheme dependence of the $\beta$-function is investigated. If the renormalization scheme is fixed to agree with a previous 1-loop calculation, the 2- and 3-loop contributions …

High Energy Physics - TheoryPhysicsFOS: Physical sciencesLie groupFísicaRenormalization groupSymmetry groupLambdaRenormalizationHigh Energy Physics - Theory (hep-th)Quantum mechanicsRegularization (physics)Gauge theoryBoson
researchProduct

Renormalization, running couplings, and decoupling for the Yukawa model in a curved spacetime

2021

The decoupling of heavy fields as required by the Appelquist-Carazzone theorem plays a fundamental role in the construction of any effective field theory. However, it is not a trivial task to implement a renormalization prescription that produces the expected decoupling of massive fields, and it is even more difficult in curved spacetime. Focused on this idea, we consider the renormalization of the one-loop effective action for the Yukawa interaction with a background scalar field in curved space. We compute the beta functions within a generalized DeWitt-Schwinger subtraction procedure and discuss the decoupling in the running of the coupling constants. For the case of a quantized scalar fi…

High Energy Physics - TheoryPhysicsField (physics)Yukawa potentialFOS: Physical sciencesGeneral Relativity and Quantum Cosmology (gr-qc)Decoupling (cosmology)Yukawa interactionGeneral Relativity and Quantum CosmologyRenormalizationTheoretical physicsHigh Energy Physics - Theory (hep-th)Beta function (physics)Scalar fieldCurved spacePhysical Review D
researchProduct

Composite operators in asymptotic safety

2017

We study the role of composite operators in the Asymptotic Safety program for quantum gravity. By including in the effective average action an explicit dependence on new sources we are able to keep track of operators which do not belong to the exact theory space and/or are normally discarded in a truncation. Typical examples are geometric operators such as volumes, lengths, or geodesic distances. We show that this set-up allows to investigate the scaling properties of various interesting operators via a suitable exact renormalization group equation. We test our framework in several settings, including Quantum Einstein Gravity, the conformally reduced Einstein-Hilbert truncation, and two dim…

High Energy Physics - TheoryPhysicsGeodesic010308 nuclear & particles physicsTruncationAsymptotic safety in quantum gravityFOS: Physical sciencesObservableGeneral Relativity and Quantum Cosmology (gr-qc)Operator theoryRenormalization group01 natural sciencesGeneral Relativity and Quantum CosmologyAction (physics)Theoretical physicsHigh Energy Physics - Theory (hep-th)Quantum mechanics0103 physical sciencesQuantum gravity010306 general physicsPhysical Review D
researchProduct

On the Possibility of Quantum Gravity Effects at Astrophysical Scales

2007

The nonperturbative renormalization group flow of Quantum Einstein Gravity (QEG) is reviewed. It is argued that at large distances there could be strong renormalization effects, including a scale dependence of Newton's constant, which mimic the presence of dark matter at galactic and cosmological scales.

High Energy Physics - TheoryPhysicsGravity (chemistry)Scale (ratio)High Energy Physics::LatticeDark matterAstrophysics (astro-ph)FOS: Physical sciencesAstronomy and AstrophysicsAstrophysics::Cosmology and Extragalactic AstrophysicsGeneral Relativity and Quantum Cosmology (gr-qc)AstrophysicsGeneral Relativity and Quantum CosmologyRenormalizationTheoretical physicssymbols.namesakeGeneral Relativity and Quantum CosmologyHigh Energy Physics - Theory (hep-th)Space and Planetary SciencesymbolsQuantum gravityEinsteinConstant (mathematics)QuantumMathematical Physics
researchProduct

ON QUANTUM GRAVITY, ASYMPTOTIC SAFETY AND PARAMAGNETIC DOMINANCE

2012

We discuss the conceptual ideas underlying the Asymptotic Safety approach to the nonperturbative renormalization of gravity. By now numerous functional renormalization group studies predict the existence of a suitable nontrivial ultraviolet fixed point. We use an analogy to elementary magnetic systems to uncover the physical mechanism behind the emergence of this fixed point. It is seen to result from the dominance of certain paramagnetic-type interactions over diamagnetic ones. Furthermore, the spacetimes of Quantum Einstein Gravity behave like a polarizable medium with a "paramagnetic" response to external perturbations. Similarities with the vacuum state of Yang-Mills theory are pointed …

High Energy Physics - TheoryPhysicsGravity (chemistry)Vacuum stateAsymptotic safety in quantum gravityFOS: Physical sciencesAstronomy and AstrophysicsGeneral Relativity and Quantum Cosmology (gr-qc)Fixed pointRenormalization groupGeneral Relativity and Quantum CosmologyRenormalizationHigh Energy Physics - PhenomenologyGeneral Relativity and Quantum CosmologyTheoretical physicsHigh Energy Physics - Phenomenology (hep-ph)High Energy Physics - Theory (hep-th)Space and Planetary ScienceQuantum gravityFunctional renormalization groupQuantumMathematical PhysicsInternational Journal of Modern Physics D
researchProduct

Remarks on the renormalization of primordial cosmological perturbations

2011

We briefly review the need to perform renormalization of inflationary perturbations to properly work out the physical power spectra. We also summarize the basis of (momentum-space) renormalization in curved spacetime and address several misconceptions found in recent literature on this subject.

High Energy Physics - TheoryPhysicsInflation (cosmology)Nuclear and High Energy PhysicsCosmology and Nongalactic Astrophysics (astro-ph.CO)Quantum field theory in curved spacetimeBasis (linear algebra)Spacetime010308 nuclear & particles physicsFísicaFOS: Physical sciencesSpectral densityGeneral Relativity and Quantum Cosmology (gr-qc)01 natural sciencesGeneral Relativity and Quantum CosmologyRenormalizationGeneral Relativity and Quantum CosmologyTheoretical physicsClassical mechanicsHigh Energy Physics - Theory (hep-th)0103 physical sciences010306 general physicsAstrophysics - Cosmology and Nongalactic AstrophysicsPhysical Review D
researchProduct

Spacetime correlators of perturbations in slow-roll de Sitter inflation

2014

Two-point correlators and self-correlators of primordial perturbations in quasi-de Sitter spacetime backgrounds are considered. For large separations two-point correlators exhibit nearly scale invariance, while for short distances self-correlators need standard renormalization. We study the deformation of two-point correlators to smoothly match the self-correlators at coincidence. The corresponding angular power spectrum is evaluated in the Sachs-Wolfe regime of low multipoles. Scale invariance is maintained, but the amplitude of $C_{\ell}$ could change in a non-trivial way.

High Energy Physics - TheoryPhysicsInflation (cosmology)Nuclear and High Energy PhysicsCosmology and Nongalactic Astrophysics (astro-ph.CO)Quantum field theory in curved spacetimeSpacetimeSlow rollFOS: Physical sciencesSpectral densityFísicaGeneral Relativity and Quantum Cosmology (gr-qc)Scale invarianceGeneral Relativity and Quantum CosmologyRenormalizationHigh Energy Physics - Theory (hep-th)De Sitter universeQuantum mechanicsAstrophysics - Cosmology and Nongalactic AstrophysicsMathematical physics
researchProduct