Search results for "RENORMALIZATION"
showing 10 items of 470 documents
Investigating the Ultraviolet Properties of Gravity with a Wilsonian Renormalization Group Equation
2008
We review and extend in several directions recent results on the asymptotic safety approach to quantum gravity. The central issue in this approach is the search of a Fixed Point having suitable properties, and the tool that is used is a type of Wilsonian renormalization group equation. We begin by discussing various cutoff schemes, i.e. ways of implementing the Wilsonian cutoff procedure. We compare the beta functions of the gravitational couplings obtained with different schemes, studying first the contribution of matter fields and then the so-called Einstein-Hilbert truncation, where only the cosmological constant and Newton's constant are retained. In this context we make connection with…
Comment on “Topological invariants, instantons, and the chiral anomaly on spaces with torsion”
1999
In Riemann-Cartan spacetimes with torsion only its axial covector piece $A$ couples to massive Dirac fields. Using renormalization group arguments, we show that besides the familiar Riemannian term only the Pontrjagin type four-form $dA\wedge dA$ does arise additionally in the chiral anomaly, but not the Nieh-Yan term $d^\star A$, as has been claimed in a recent paper [PRD 55, 7580 (1997)].
Polyakov effective action from functional renormalization group equation
2010
We discuss the Polyakov effective action for a minimally coupled scalar field on a two dimensional curved space by considering a non-local covariant truncation of the effective average action. We derive the flow equation for the form factor in $\int\sqrt{g}R c_{k}(\Delta)R$, and we show how the standard result is obtained when we integrate the flow from the ultraviolet to the infrared.
Differential Regularization of a Non-relativistic Anyon Model
1994
Differential regularization is applied to a field theory of a non-relativistic charged boson field $\phi$ with $\lambda (\phi {}^{*} \phi)^2$ self-interaction and coupling to a statistics-changing $U(1)$ Chern-Simons gauge field. Renormalized configuration-space amplitudes for all diagrams contributing to the $\phi {}^{*} \phi {}^{*} \phi \phi$ 4-point function, which is the only primitively divergent Green's function, are obtained up to 3-loop order. The renormalization group equations are explicitly checked, and the scheme dependence of the $\beta$-function is investigated. If the renormalization scheme is fixed to agree with a previous 1-loop calculation, the 2- and 3-loop contributions …
Renormalization, running couplings, and decoupling for the Yukawa model in a curved spacetime
2021
The decoupling of heavy fields as required by the Appelquist-Carazzone theorem plays a fundamental role in the construction of any effective field theory. However, it is not a trivial task to implement a renormalization prescription that produces the expected decoupling of massive fields, and it is even more difficult in curved spacetime. Focused on this idea, we consider the renormalization of the one-loop effective action for the Yukawa interaction with a background scalar field in curved space. We compute the beta functions within a generalized DeWitt-Schwinger subtraction procedure and discuss the decoupling in the running of the coupling constants. For the case of a quantized scalar fi…
Composite operators in asymptotic safety
2017
We study the role of composite operators in the Asymptotic Safety program for quantum gravity. By including in the effective average action an explicit dependence on new sources we are able to keep track of operators which do not belong to the exact theory space and/or are normally discarded in a truncation. Typical examples are geometric operators such as volumes, lengths, or geodesic distances. We show that this set-up allows to investigate the scaling properties of various interesting operators via a suitable exact renormalization group equation. We test our framework in several settings, including Quantum Einstein Gravity, the conformally reduced Einstein-Hilbert truncation, and two dim…
On the Possibility of Quantum Gravity Effects at Astrophysical Scales
2007
The nonperturbative renormalization group flow of Quantum Einstein Gravity (QEG) is reviewed. It is argued that at large distances there could be strong renormalization effects, including a scale dependence of Newton's constant, which mimic the presence of dark matter at galactic and cosmological scales.
ON QUANTUM GRAVITY, ASYMPTOTIC SAFETY AND PARAMAGNETIC DOMINANCE
2012
We discuss the conceptual ideas underlying the Asymptotic Safety approach to the nonperturbative renormalization of gravity. By now numerous functional renormalization group studies predict the existence of a suitable nontrivial ultraviolet fixed point. We use an analogy to elementary magnetic systems to uncover the physical mechanism behind the emergence of this fixed point. It is seen to result from the dominance of certain paramagnetic-type interactions over diamagnetic ones. Furthermore, the spacetimes of Quantum Einstein Gravity behave like a polarizable medium with a "paramagnetic" response to external perturbations. Similarities with the vacuum state of Yang-Mills theory are pointed …
Remarks on the renormalization of primordial cosmological perturbations
2011
We briefly review the need to perform renormalization of inflationary perturbations to properly work out the physical power spectra. We also summarize the basis of (momentum-space) renormalization in curved spacetime and address several misconceptions found in recent literature on this subject.
Spacetime correlators of perturbations in slow-roll de Sitter inflation
2014
Two-point correlators and self-correlators of primordial perturbations in quasi-de Sitter spacetime backgrounds are considered. For large separations two-point correlators exhibit nearly scale invariance, while for short distances self-correlators need standard renormalization. We study the deformation of two-point correlators to smoothly match the self-correlators at coincidence. The corresponding angular power spectrum is evaluated in the Sachs-Wolfe regime of low multipoles. Scale invariance is maintained, but the amplitude of $C_{\ell}$ could change in a non-trivial way.