Search results for "RNA processing"

showing 10 items of 63 documents

RNA Modifications Modulate Activation of Innate Toll-Like Receptors

2019

Self/foreign discrimination by the innate immune system depends on receptors that identify molecular patterns as associated to pathogens. Among others, this group includes endosomal Toll-like receptors, among which Toll-like receptors (TLR) 3, 7, 8, and 13 recognize and discriminate mammalian from microbial, potentially pathogen-associated, RNA. One of the discriminatory principles is the recognition of endogenous RNA modifications. Previous work has identified a couple of RNA modifications that impede activation of TLR signaling when incorporated in synthetic RNA molecules. Of note, work that is more recent has now shown that RNA modifications in their naturally occurring context can have …

0301 basic medicinelcsh:QH426-470EndosomeContext (language use)ReviewBiology03 medical and health sciences0302 clinical medicineRNA modificationsGeneticsAnimalsHumansGenetics(clinical)RNA Processing Post-TranscriptionalReceptorGeneinnate immunityGenetics (clinical)Innate immune systemRNATLR7Immunity InnateCell biologyToll-like receptorslcsh:Genetics030104 developmental biologyTransfer RNAmethylation030215 immunologyGenes
researchProduct

Translational adaptation to heat stress is mediated by RNA 5‐methylcytosine in Caenorhabditis elegans

2021

Abstract Methylation of carbon‐5 of cytosines (m5C) is a post‐transcriptional nucleotide modification of RNA found in all kingdoms of life. While individual m5C‐methyltransferases have been studied, the impact of the global cytosine‐5 methylome on development, homeostasis and stress remains unknown. Here, using Caenorhabditis elegans, we generated the first organism devoid of m5C in RNA, demonstrating that this modification is non‐essential. Using this genetic tool, we determine the localisation and enzymatic specificity of m5C sites in the RNome in vivo. We find that NSUN‐4 acts as a dual rRNA and tRNA methyltransferase in C. elegans mitochondria. In agreement with leucine and proline bein…

Hot TemperatureProlineRibosomeGeneral Biochemistry Genetics and Molecular BiologyArticle03 medical and health sciencesNSUNCytosine0302 clinical medicineRNA modificationsLeucinem5CAnimalsRNA Processing Post-TranscriptionalCaenorhabditis elegansMolecular BiologytRNACaenorhabditis elegansprotein translation030304 developmental biologyGene Editing0303 health sciencesGeneral Immunology and MicrobiologybiologyGeneral NeuroscienceTRNA MethyltransferaseRNATranslation (biology)MethylationArticlesMethyltransferasesRibosomal RNAbiology.organism_classificationRNA BiologyAdaptation Physiological5‐methylcytosineCell biologyMitochondriatranslation efficiencyProtein BiosynthesisTransfer RNA5-MethylcytosineRNACRISPR-Cas SystemsRibosomes030217 neurology & neurosurgeryHeat-Shock ResponseThe EMBO Journal
researchProduct

RNA nucleotide methylation

2011

Methylation of RNA occurs at a variety of atoms, nucleotides, sequences and tertiary structures. Strongly related to other posttranscriptional modifications, methylation of different RNA species includes tRNA, rRNA, mRNA, tmRNA, snRNA, snoRNA, miRNA, and viral RNA. Different catalytic strategies are employed for RNA methylation by a variety of RNA-methyltransferases which fall into four superfamilies. This review outlines the different functions of methyl groups in RNA, including biophysical, biochemical and metabolic stabilization of RNA, quality control, resistance to antibiotics, mRNA reading frame maintenance, deciphering of normal and altered genetic code, selenocysteine incorporation,…

Models MolecularRNA methylationRNA-dependent RNA polymeraseRNA ArchaealBiologyMethylationBiochemistryRNA TransferDrug Resistance BacterialRNA Processing Post-TranscriptionalMolecular BiologyGeneticstRNA MethyltransferasesBinding SitesIntronRNANon-coding RNARNA BacterialRNA silencingRNA RibosomalRNA editingProtein BiosynthesisBiocatalysisNucleic Acid ConformationRNARNA ViralSmall nuclear RNAWIREs RNA
researchProduct

Loss of Anticodon Wobble Uridine Modifications Affects tRNALys Function and Protein Levels in Saccharomyces cerevisiae

2015

In eukaryotes, wobble uridines in the anticodons of tRNA(Lys)UUU, tRNA(Glu)UUC and tRNA(Gln)UUG are modified to 5-methoxy-carbonyl-methyl-2-thio-uridine (mcm5s2U). While mutations in subunits of the Elongator complex (Elp1-Elp6), which disable mcm5 side chain formation, or removal of components of the thiolation pathway (Ncs2/Ncs6, Urm1, Uba4) are individually tolerated, the combination of both modification defects has been reported to have lethal effects on Saccharomyces cerevisiae. Contrary to such absolute requirement of mcm5s2U for viability, we demonstrate here that in the S. cerevisiae S288C-derived background, both pathways can be simultaneously inactivated, resulting in combined los…

Saccharomyces cerevisiae Proteinslcsh:Rlcsh:MedicineRNA Transfer Lyslcsh:QRNA FungalSaccharomyces cerevisiaeRNA Processing Post-Transcriptionallcsh:ScienceUridineResearch ArticlePLoS ONE
researchProduct

MODOMICS: a database of RNA modification pathways—2013 update

2012

MODOMICS is a database of RNA modifications that provides comprehensive information concerning the chemical structures of modified ribonucleosides, their biosynthetic pathways, RNA-modifying enzymes and location of modified residues in RNA sequences. In the current database version, accessible at http://modomics.genesilico.pl, we included new features: a census of human and yeast snoRNAs involved in RNA-guided RNA modification, a new section covering the 5′-end capping process, and a catalogue of ‘building blocks’ for chemical synthesis of a large variety of modified nucleosides. The MODOMICS collections of RNA modifications, RNA-modifying enzymes and modified RNAs have been also updated. A…

TRNA modificationSequence analysisBiologycomputer.software_genre03 medical and health sciences0302 clinical medicineRNA Small NuclearEpitranscriptomicsGeneticsHumansRNA Small NucleolarRNA Processing Post-TranscriptionalSmall nucleolar RNA030304 developmental biologyGeneticsInternet0303 health sciencesDatabaseSequence Analysis RNAMRNA modificationRNAArticlesRibosomal RNAEnzymes3. Good healthTransfer RNARNADatabases Nucleic Acidcomputer030217 neurology & neurosurgeryNucleic Acids Research
researchProduct

Sequence analysis of the rDNA spacer of Paracentrotus lividus and observations about pre-rRNA processing. NTS sequence of Paracentrotus lividus rDNA.

1993

We have isolated and sequenced one intergenic region and a small part of the flanking regions (18S and 26S rRNA coding regions) of the rRNA-encoding genes (rDNA) from the sea urchin Paracentrotus lividus. This region is about 3.8 Kb long. Northern blot hybridizations and S1 mapping experiments demonstrated the presence of a partially processed 21S rRNA precursor while has the same 5' terminus as the 32S primary precursor, also in developmental stages characterized by a low rate of rRNA synthesis.

Sequence analysisMolecular Sequence DataRestriction MappingDNA RibosomalParacentrotus lividusIntergenic regionSpecies SpecificitySequence Homology Nucleic AcidGeneticsRNA PrecursorsAnimalsRNA Processing Post-TranscriptionalRRNA processingMolecular BiologyRibosomal DNAbiologyBase SequenceGeneral MedicineSpacer DNARibosomal RNAbiology.organism_classificationMolecular biologyExternal transcribed spacerSea UrchinsOocytesFemaleMolecular biology reports
researchProduct

Coordinated remodeling of cellular metabolism during iron deficiency through targeted mRNA degradation.

2004

AbstractIron (Fe) is an essential micronutrient for virtually all organisms and serves as a cofactor for a wide variety of vital cellular processes. Although Fe deficiency is the primary nutritional disorder in the world, cellular responses to Fe deprivation are poorly understood. We have discovered a posttranscriptional regulatory process controlled by Fe deficiency, which coordinately drives widespread metabolic reprogramming. We demonstrate that, in response to Fe deficiency, the Saccharomyces cerevisiae Cth2 protein specifically downregulates mRNAs encoding proteins that participate in many Fe-dependent processes. mRNA turnover requires the binding of Cth2, an RNA binding protein conser…

Untranslated regionSaccharomyces cerevisiae ProteinsTranscription GeneticIronSaccharomyces cerevisiaeMolecular Sequence DataDown-RegulationRNA-binding proteinSaccharomyces cerevisiaeBiologyGeneral Biochemistry Genetics and Molecular BiologyCofactorTristetraprolinGene Expression Regulation FungalMRNA degradationmedicineRNA MessengerRNA Processing Post-TranscriptionalMessenger RNABase SequenceBiochemistry Genetics and Molecular Biology(all)Mechanism (biology)Iron deficiencybiology.organism_classificationmedicine.diseaseDNA-Binding ProteinsBiochemistryMutationbiology.proteinPlasmidsCell
researchProduct

Xrn1 influence on gene transcription results from the combination of general effects on elongating RNA pol II and gene-specific chromatin configurati…

2020

mRNA homoeostasis is favoured by crosstalk between transcription and degradation machineries. Both the Ccr4-Not and the Xrn1-decaysome complexes have been described to influence transcription. While Ccr4-Not has been shown to directly stimulate transcription elongation, the information available on how Xrn1 influences transcription is scarce and contradictory. In this study we have addressed this issue by mapping RNA polymerase II (RNA pol II) at high resolution, using CRAC and BioGRO-seq techniques in Saccharomyces cerevisiae. We found significant effects of Xrn1 perturbation on RNA pol II profiles across the genome. RNA pol II profiles at 5ʹ exhibited significant alterations that were com…

mRNA bufferingSaccharomyces cerevisiae ProteinsTranscription Elongation GeneticTranscription elongationPolyadenylationSaccharomyces cerevisiaeMRNA DecayRNA polymerase IISaccharomyces cerevisiaeTranscription elongation03 medical and health sciences0302 clinical medicinemRNA decayTranscription (biology)RNA decay/gene transcription crosstalkGene Expression Regulation FungalNucleosomemRNA decay/gene transcription crosstalkMolecular BiologyXrn1Gene030304 developmental biology0303 health sciencesMessenger RNAbiologyChemistryCell Biologybiology.organism_classificationRNA bufferingmChromatinChromatinCell biologyNucleosomesCrosstalk (biology)3ʹ pre-mRNA processing030220 oncology & carcinogenesisXrn13ʹExoribonucleasesbiology.proteinpre-mRNA processingmRNA Polymerase IITranscriptional Elongation FactorsResearch PaperRNA biology
researchProduct

Pseudouridine: Still mysterious, but never a fake (uridine)!

2014

International audience; Pseudouridine () is the most abundant of >150 nucleoside modifications in RNA. Although was discovered as the first modified nucleoside more than half a century ago, neither the enzymatic mechanism of its formation, nor the function of this modification are fully elucidated. We present the consistent picture of synthases, their substrates and their substrate positions in model organisms of all domains of life as it has emerged to date and point out the challenges that remain concerning higher eukaryotes and the elucidation of the enzymatic mechanism.

RNA MitochondrialSaccharomyces cerevisiaeReviewBiologyModified nucleosidesPseudouridine03 medical and health scienceschemistry.chemical_compound0302 clinical medicineRNA modificationEscherichia coliHumansRNA Processing Post-Transcriptional[SDV.BBM.BC]Life Sciences [q-bio]/Biochemistry Molecular Biology/Biochemistry [q-bio.BM]Intramolecular TransferasesUridineMolecular Biology030304 developmental biology0303 health sciencesRNACell BiologyRNA Transfer Amino Acid-SpecificRibonucleoproteins Small NuclearUridineIsoenzymeschemistryBiochemistryRNA Ribosomal030220 oncology & carcinogenesisTransfer RNANucleic Acid ConformationRNARibosomesNucleosidePseudouridineSmall nuclear RNA[SDV.MHEP]Life Sciences [q-bio]/Human health and pathologyRNA Guide Kinetoplastida
researchProduct

Post-transcriptional, post-translational and pharmacological regulation of tissue factor pathway inhibitor.

2018

: Tissue factor (TF) pathway inhibitor (TFPI) is an endogenous natural anticoagulant that readily inhibits the extrinsic coagulation initiation complex (TF-FVIIa-Xa) and prothrombinase (FXa, FVa and calcium ions). Alternatively, spliced TFPI isoforms (α, β and δ) are expressed by vascular and extravascular cells and regulate thrombosis and haemostasis, as well as cell signalling functions of TF complexes via protease-activated receptors (PARs). Proteolysis of TFPI plays an important role in regulating physiological roles of the TF pathway in host defense and possibly haemostasis. Elimination of TFPI inhibition has therefore been proposed as an approach to improve haemostasis in haemophilia …

0301 basic medicineProteasesCell signalingProteolysisLipoproteinsEndogeny030204 cardiovascular system & hematology03 medical and health sciencesTissue factor0302 clinical medicineTissue factor pathway inhibitorProthrombinasemedicineAnimalsHumansRNA Processing Post-TranscriptionalReceptorHemostasismedicine.diagnostic_testChemistryThrombosisHematologyGeneral MedicineCell biology030104 developmental biologyProtein Processing Post-TranslationalBlood coagulationfibrinolysis : an international journal in haemostasis and thrombosis
researchProduct