Search results for "ROOTS"

showing 10 items of 380 documents

Rapid determination of baicalin and total baicalein content in Scutellariae radix by ATR-IR and NIR spectroscopy

2013

In this study methods for the quantification of baicalin and total baicalein in Scutellariae radix with near infrared (NIR) spectroscopy and attenuated-total-reflectance mid-infrared (ATR-IR) spectroscopy in hyphenation with multivariate analysis were developed and compared. The reference analysis was performed by high performance liquid chromatography coupled to diode array detection (HPLC-DAD). Different pretreatments like standard normal variate (SNV), multiplicative scatter correction (MSC), first and second derivative Savitzky-Golay were applied on the spectra to optimize the calibrations. A principal component analysis was performed with both spectroscopic methods to distinguish wild …

Spectrophotometry InfraredATR-IRAnalytical chemistryPlant RootsHigh-performance liquid chromatographyArticleAnalytical Chemistrychemistry.chemical_compoundScutellariae radixScutellariae radixBaicalinLeast-Squares AnalysisSpectroscopySecond derivativeFlavonoidsPrincipal Component AnalysisChromatographybiologyNear-infrared spectroscopyNIRBaicaleinbiology.organism_classificationBaicaleinchemistryFlavanonesScutellaria baicalensisBaicalinScutellaria baicalensisTalanta
researchProduct

Acylated oleanane-type saponins from Ganophyllum giganteum

2014

Abstract Five oleanane-type saponins , 3- O -β- D -glucuronopyranosylzanhic acid 28- O -β- D -xylopyranosyl-(1→3)-[α- L -rhamnopyranosyl-(1→2)]-(4- O -acetyl)-β- D -fucopyranosyl ester ( 1 ), 3- O -β- D -glucopyranosylzanhic acid 28- O -β- D -xylopyranosyl-(1→3)-[α- L -rhamnopyranosyl-(1→2)]-(4- O -acetyl)-β- D -fucopyranosyl ester ( 2 ), zanhic acid 28- O -β- D -xylopyranosyl-(1→3)-[α- L -rhamnopyranosyl-(1→2)]-(4- O -acetyl)-β- D -fucopyranosyl ester ( 3 ), zanhic acid 28- O -α- L -rhamnopyranosyl-(1→2)-4- O -[(3′-hydroxy-2′-methyl-butyroyloxy)-3-hydroxy-2-methyl-butyroyloxy]-β- D -fucopyranosyl ester ( 4 ), medicagenic acid 28- O -α- L -rhamnopyranosyl-(1→2)-4- O -[(3′-hydroxy-2′-methyl-…

StereochemistryAcylationMolecular ConformationPlant ScienceHorticulturePlant RootsBiochemistryMiceStructure-Activity Relationshipchemistry.chemical_compoundSapindaceaeCell Line TumorAnimalsHumansOrganic chemistryMoietyOleanolic AcidMolecular BiologyOleananeCell ProliferationInflammationBiological ProductsDose-Response Relationship DrugChemistryHydrolysisAnti-Inflammatory Agents Non-SteroidalGeneral MedicineSaponinsAntineoplastic Agents PhytogenicMedicagenic acidDoratoxyleaeDrug Screening Assays AntitumorPhytochemistry
researchProduct

Novel Acylated Triterpene Glycosides from Muraltia heisteria

2002

Four new acylated triterpene glycosides (1-4) have been isolated as two inseparable mixtures of the trans- and cis-3,4,5-trimethoxycinnamoyl derivatives (1,2 and 3,4) from the roots of Muraltia heisteria. The structures of these compounds were elucidated by various 1D and 2D NMR techniques, including (1)H and (13)C, COSY, NOESY, HSQC, TOCSY, and HMBC experiments and FABMS. Compounds 3 and 4 were shown to be cytotoxic in a human colon cancer cell line but did not show any ability to potentiate in vitro cisplatin cytotoxicity.

StereochemistryAcylationSaponinPharmaceutical ScienceStereoisomerismPharmacognosyPlant RootsAnalytical ChemistrySouth AfricaTriterpeneDrug DiscoveryTumor Cells CulturedHumansOrganic chemistryNuclear Magnetic Resonance BiomolecularChromatography High Pressure LiquidPharmacologychemistry.chemical_classificationMolecular StructureChemistryHydrolysisOrganic ChemistryGlycosideStereoisomerismBiological activitySaponinsAntineoplastic Agents PhytogenicTriterpenesTerpenoidPolygalaceaeComplementary and alternative medicineMolecular MedicineCisplatinDrug Screening Assays AntitumorHT29 CellsTwo-dimensional nuclear magnetic resonance spectroscopyJournal of Natural Products
researchProduct

Acylated Preatroxigenin Glycosides from Atroxima congolana

2003

Six new acylated bisdesmosidic preatroxigenin saponins named atroximasaponins E1, E2 (1, 2), F1, F2 (3, 4), and G1, G2 (5, 6) were isolated as three inseparable mixtures of the trans- and cis-p-methoxycinnamoyl derivatives, from the roots of Atroxima congolana. Their structures were established through extensive NMR spectroscopic analysis as 3-O-beta-D-glucopyranosylpreatroxigenin-28-O-beta-D-xylopyranosyl-(1--4)-alpha-L-rhamnopyranosyl-(1--2)-[beta-D-glucopyranosyl-(1--3)]-[4-O-trans-p-methoxycinnamoyl]-beta-D-fucopyranoside (atroximasaponin E1, 1), and its cis-isomer, atroximasaponin E2 (2), 3-O-beta-D-glucopyranosylpreatroxigenin-28-O-beta-D-xylopyranosyl-(1--4)-alpha-L-rhamnopyranosyl-(…

StereochemistryAcylationSaponinPharmaceutical ScienceStereoisomerismPlant RootsAnalytical ChemistryAcylationPlant scienceTriterpeneDrug DiscoveryTetrasaccharideNuclear Magnetic Resonance BiomolecularPharmacologychemistry.chemical_classificationMolecular StructureHydrolysisOrganic ChemistryGlycosideStereoisomerismSaponinsPolygalaceaeCongoComplementary and alternative medicinechemistryAldoseMolecular MedicineJournal of Natural Products
researchProduct

Triterpenoid saponins from the roots of Spergularia marginata.

2016

Phytochemical investigations of the roots of Spergularia marginata had led to the isolation of four previously undescribed triterpenoid saponins, a known one and one spinasterol glycoside. Their structures were established by extensive NMR and mass spectroscopic techniques as 3-O-β-D-glucuronopyranosyl echinocystic acid 28-O-α-L-arabinopyranosyl-(1 → 2)-α-L-rhamnopyranosyl-(1 → 3)-β-D-xylopyranosyl-(1 → 4)-α-L-rhamnopyranosyl-(1 → 2)-α-L- arabinopyranosyl ester, 3-O-β-D-glucopyranosyl-(1 → 3)-β-D-glucuronopyranosyl echinocystic acid 28-O-α-L-arabinopyranosyl-(1 → 2)-α-L-rhamnopyranosyl-(1 → 3)-β-D-xylopyranosyl-(1 → 4)-α-L-rhamnopyranosyl-(1 → 2)- α-L-arabinopyranosyl ester, 3-O-β-D-glucopy…

StereochemistryCaryophyllaceaeCaryophyllaceaePlant ScienceHorticulture01 natural sciencesBiochemistryPlant Rootschemistry.chemical_compoundTriterpenoidHumansOleanolic AcidCytotoxicityMolecular BiologyNuclear Magnetic Resonance Biomolecularchemistry.chemical_classificationbiologyMolecular Structure010405 organic chemistryGlycosideGeneral MedicineSaponinsbiology.organism_classificationTriterpenes0104 chemical sciences010404 medicinal & biomolecular chemistryMoroccoSpinasterolchemistryPhytochemicalTwo-dimensional nuclear magnetic resonance spectroscopySpergulariaPhytochemistry
researchProduct

Terpenoid glycosides from the root's barks of Eriocoelum microspermum Radlk. ex Engl.

2018

Abstract Eight undescribed triterpenoid saponins together with a known one, and two undescribed sesquiterpene glycosides were isolated from root's barks of Eriocoelum microspermum. Their structures were elucidated by spectroscopic methods including 1D and 2D experiments in combinaison with mass spectrometry as 3-O-α-L-rhamnopyranosyl-(1 → 3)-[α-L-rhamnopyranosyl-(1 → 2)]-α-L-arabinopyranosylhederagenin, 3-O-α-L-rhamnopyranosyl-(1 → 3)-[β-D-glucopyranosyl-(1 → 3)-α-L-rhamnopyranosyl-(1 → 2)]-α-L-arabinopyranosylhederagenin, 3-O-α-L-rhamnopyranosyl-(1 → 3)-[β-D-xylopyranosyl-(1 → 3)-α-L-rhamnopyranosyl-(1 → 2)]-α-L-arabinopyranosylhederagenin, 3-O-α-L-rhamnopyranosyl-(1 → 4)-[α-L-rhamnopyrano…

StereochemistryChemical structurePlant ScienceHorticultureSesquiterpenePlant Roots01 natural sciencesBiochemistrychemistry.chemical_compoundSapindaceaeTriterpenoidCarbohydrate ConformationEriocoelum microspermumGlycosidesMolecular Biologychemistry.chemical_classificationTerpenes010405 organic chemistryChemistrySapindoideaeGlycosideGeneral MedicineTerpenoid0104 chemical sciences010404 medicinal & biomolecular chemistryChemotaxonomyPlant BarkPhytochemistry
researchProduct

A New Major Triterpene Saponin from the Roots of Cucurbita foetidissima

2000

Foetidissimoside B (1), a novel triterpene saponin, was isolated from the roots of Cucurbita foetidissima. Based on spectroscopic data, especially direct and long-range heteronuclear 2D NMR analysis and on chemical transformations, the structure of 1 was elucidated as 3-O-beta-D-glucuronopyranosyl-echinocystic acid 28-O-beta-D-glucopyranosyl-(1-->3)-beta-D-xylopyranosyl(1-->3)-[beta- D-xylopyranosyl (1-->4)]-alpha-L-rhamnopyranosyl-(1-->2)-alpha-L-arabinopyranoside . Compound 1 did not show any ability to potentiate in vitro cisplatin cytotoxicity in a human colon cancer cell line.

StereochemistryMolecular Sequence DataSaponinPharmaceutical ScienceUronic acidPharmacognosyPlant RootsAnalytical Chemistrychemistry.chemical_compoundTriterpeneDrug DiscoveryCarbohydrate ConformationTumor Cells CulturedHumansOleanolic AcidCytotoxicityPharmacologychemistry.chemical_classificationbiologySpectrum AnalysisOrganic ChemistryGlycosideSaponinsbiology.organism_classificationCucurbitaceaeCarbohydrate SequenceComplementary and alternative medicineHeteronuclear moleculechemistryBiochemistryMolecular MedicineCucurbita foetidissimaDrug Screening Assays AntitumorJournal of Natural Products
researchProduct

Joziknipholones A and B: The First Dimeric Phenylanthraquinones, from the Roots ofBulbine frutescens

2007

From the roots of the African plant Bulbine frutescens (Asphodelaceae), two unprecedented novel dimeric phenylanthraquinones, named joziknipholones A and B, possessing axial and centrochirality, were isolated, together with six known compounds. Structural elucidation of the new metabolites was achieved by spectroscopic and chiroptical methods, by reductive cleavage of the central bond between the monomeric phenylanthraquinone and -anthrone portions with sodium dithionite, and by quantum chemical CD calculations. Based on the recently revised absolute axial configuration of the parent phenylanthraquinones, knipholone and knipholone anthrone, the new dimers were attributed to possess the P-co…

StereochemistryPlasmodium falciparumDrug ResistanceAnthraquinonesStereoisomerismPlant RootsAnthroneAnthraquinoneCatalysisSodium dithioniteAntimalarialsMicechemistry.chemical_compoundCell Line TumorLiliaceaeAnimalsAsphodelaceaeLeukemia L5178Plants MedicinalMolecular StructurebiologySpectrum AnalysisOrganic ChemistryDithioniteChloroquineStereoisomerismPlasmodium falciparumGeneral Chemistrybiology.organism_classificationAntineoplastic Agents PhytogenicRatschemistryQuantum TheoryBulbine frutescensChirality (chemistry)DimerizationAlgorithmsChemistry - A European Journal
researchProduct

Naphthalene Derivatives from the Roots of Pentas parvifolia and Pentas bussei

2016

The phytochemical investigation of the CH2Cl2/MeOH (1:1) extract of the roots of Pentas parvifolia led to the isolation of three new naphthalenes, parvinaphthols A (1), B (2), and C (3), two known anthraquinones, and five known naphthalene derivatives. Similar investigation of the roots of Pentas bussei afforded a new polycyclic naphthalene, busseihydroquinone E (4), a new 2,2'-binaphthralenyl-1,1'-dione, busseihydroquinone F (5), and five known naphthalenes. All purified metabolites were characterized by NMR and MS data analyses, whereas the absolute configurations of 3 and 4 were determined by single-crystal X-ray diffraction studies. The E-geometry of compound 5 was supported by DFT-base…

StereochemistryPlasmodium falciparumPharmaceutical SciencePentasAnthraquinonesRubiaceaeCrystallography X-Ray010402 general chemistryPlant Roots01 natural sciencesAnalytical ChemistryAntimalarialsInhibitory Concentration 50chemistry.chemical_compoundBreast cancer cell lineDrug DiscoveryAnthraquinonesIc50 valuesHumansNuclear Magnetic Resonance Biomolecularta116naphthalene derivativesNaphthalenenaphthalenesPharmacologyPentasMolecular Structurebiology010405 organic chemistryOrganic Chemistryta1182Pentas parvifoliabiology.organism_classificationphytochemicals0104 chemical sciencesComplementary and alternative medicinechemistryPhytochemicalMolecular MedicineJournal of Natural Products
researchProduct

Glandulosides A-D, triterpene saponins from Acanthophyllum glandulosum.

2004

Four novel triterpenoid saponins, glandulosides A (1), B (2), C (3), and D (4), together with two known saponins (5 and 6) have been isolated from the roots of Acanthophyllum glandulosum. Their structures were elucidated using a combination of homo- and heteronuclear 2D NMR techniques (COSY, TOCSY, NOESY, HSQC, and HMBC) and by FABMS. The new compounds were characterized as 23-O-beta-D-galactopyranosylgypsogenic acid-28-O-beta-D-glucopyranosyl-(1-->3)-[beta-d-galactopyranosyl-(1-->6)]-beta-D-galactopyranoside (1), 3-O-beta-D-galactopyranosyl-(1-->2)-[beta-D-xylopyranosyl-(1-->3)]-beta-D-glucuronopyranosylgypsogenin-28-O-beta-D-xylopyranosyl-(1-->3)-beta-D-xylopyranosyl-(1-->4)-alpha-l-rhamn…

StereochemistrySaponinPharmaceutical ScienceCaryophyllaceaeUronic acidIranPlant RootsAnalytical Chemistrychemistry.chemical_compoundTriterpeneDrug DiscoveryTetrasaccharideTrisaccharideNuclear Magnetic Resonance BiomolecularPharmacologychemistry.chemical_classificationPlants MedicinalMolecular StructureOrganic ChemistryGlycosideStereoisomerismSaponinsTriterpenesComplementary and alternative medicinechemistryHeteronuclear moleculeMolecular MedicineTwo-dimensional nuclear magnetic resonance spectroscopyJournal of natural products
researchProduct