Search results for "Rat-brain"

showing 5 items of 5 documents

Structural effects and neurofunctional sequelae of developmental exposure to psychotherapeutic drugs: experimental and clinical aspects

2004

The advent of psychotherapeutic drugs has enabled management of mental illness and other neurological problems such as epilepsy in the general population, without requiring hospitalization. The success of these drugs in controlling symptoms has led to their widespread use in the vulnerable population of pregnant women as well, where the potential embryotoxicity of the drugs has to be weighed against the potential problems of the maternal neurological state. This review focuses on the developmental toxicity and neurotoxicity of five broad categories of widely available psychotherapeutic drugs: the neuroleptics, the antiepileptics, the antidepressants, the anxiolytics and mood stabilizers, an…

Drugmedicine.medical_specialtymedia_common.quotation_subjectPopulationDevelopmental toxicityserotonin-reuptake inhibitorsEpilepsyNeurochemicalmedicineAnimalsHumansprenatal phenytoin exposurePsychiatryeducationbeta-adrenergic-receptorsmedia_commonPharmacologyrat-brain developmentPsychotropic Drugseducation.field_of_studybusiness.industryMental DisordersNeurotoxicityBrainbeta-adrenergic-receptors; central-nervous-system; cerebellar granule cells; developing cerebral-cortex; fetal hydantoin syndrome; messenger-rna expression; prenatal phenytoin exposure; rat-brain development; serotonin-reuptake inhibitors; st-johns-wortmedicine.diseaseMental illnessdeveloping cerebral-cortexmessenger-rna expressionMoodcerebellar granule cellsMolecular Medicinecentral-nervous-systemPlant Preparationsst-johns-wortfetal hydantoin syndromebusiness
researchProduct

Mast cells' involvement in inflammation pathways linked to depression: evidence in mastocytosis

2016

International audience; Converging sources of evidence point to a role for inflammation in the development of depression, fatigue and cognitive dysfunction. More precisely, the tryptophan (TRP) catabolism is thought to play a major role in inflammation-induced depression. Mastocytosis is a rare disease in which chronic symptoms, including depression, are related to mast cell accumulation and activation. Our objectives were to study the correlations between neuropsychiatric features and the TRP catabolism pathway in mastocytosis in order to demonstrate mast cells' potential involvement in inflammation-induced depression. Fifty-four patients with mastocytosis and a mean age of 50.1 years were…

Male0301 basic medicine[SHS.PSY]Humanities and Social Sciences/PsychologyKynurenic Acidchemistry.chemical_compound0302 clinical medicineKynurenic acidMast CellsIndoleamine 23-dioxygenaseAcute stressQuinolinic acidKynurenineDepression (differential diagnoses)DepressionTryptophanMiddle AgedMast cellRat-brain3. Good healthPsychiatry and Mental healthmedicine.anatomical_structure[ SCCO.NEUR ] Cognitive science/NeuroscienceFemalemedicine.symptomMastocytosisSerotoninmedicine.medical_specialtyInflammationAryl-hydrocarbon receptorCentral-nervous-system[ SHS.PSY ] Humanities and Social Sciences/Psychology03 medical and health sciencesCellular and Molecular NeuroscienceInternal medicinemedicineHumansIndoleamine-Pyrrole 23-Dioxygenase[SDV.BBM]Life Sciences [q-bio]/Biochemistry Molecular Biology[ SDV.BBM ] Life Sciences [q-bio]/Biochemistry Molecular BiologyMolecular BiologyInflammationPsychiatric Status Rating ScalesDepressive Disorder Majorbusiness.industry[SCCO.NEUR]Cognitive science/NeuroscienceBeck Depression InventoryInterferon-alphaMammalian brain030104 developmental biologyEndocrinologyImmune-systemchemistryImmunologyIndoleamine 2?3-dioxygenasebusinessStress Psychological030217 neurology & neurosurgeryKynurenineQuinolinic acid
researchProduct

Evidence for hypothalamic ketone bodies sensing: impact on food intake and peripheral metabolic responses in mice

2016

Monocarboxylates have been implicated in the control of energy homeostasis. Among them, the putative role of ketone bodies produced notably during high-fat diet (HFD) has not been thoroughly explored. In this study, we aimed to determine the impact of a specific rise in cerebral ketone bodies on food intake and energy homeostasis regulation. A carotid infusion of ketone bodies was performed on mice to stimulate sensitive brain areas for 6 or 12 h. At each time point, food intake and different markers of energy homeostasis were analyzed to reveal the consequences of cerebral increase in ketone body level detection. First, an increase in food intake appeared over a 12-h period of brain keton…

Blood GlucoseMale0301 basic medicineobesitynervous-systemPhysiology[ SDV.AEN ] Life Sciences [q-bio]/Food and NutritionEndocrinology Diabetes and MetabolismKetone BodiesEnergy homeostasisEatingMicebodiesHomeostasisGlucose homeostasisoxidative stressAgouti-Related ProteinNeuropeptide YPhosphorylationmonocarboxylate transporters2. Zero hunger[ SDV.MHEP.PHY ] Life Sciences [q-bio]/Human health and pathology/Tissues and Organs [q-bio.TO]fat massHypothalamusKetone bodiesStarvation responseketogenic mediterranean dietweight-lossmedicine.medical_specialtybeta-hydroxybutyrateHypothalamusBiologyDiet High-Fat03 medical and health sciencesInsulin resistancerat-brainPhysiology (medical)Internal medicinemedicine[SDV.MHEP.PHY]Life Sciences [q-bio]/Human health and pathology/Tissues and Organs [q-bio.TO]Animalsglucose homeostasisAdenylate Kinase/metabolism; Agouti-Related Protein/metabolism; Animals; Blood Glucose; Diet High-Fat; Eating/drug effects; Eating/physiology; Energy Metabolism/drug effects; Energy Metabolism/physiology; Gluconeogenesis/drug effects; Gluconeogenesis/physiology; Homeostasis; Hypothalamus/drug effects; Hypothalamus/metabolism; Insulin Resistance/physiology; Ketone Bodies/pharmacology; Male; Mice; Mice Inbred C57BL; Neuropeptide Y/metabolism; Phosphorylation/drug effectsenergy homeostasisAdenylate KinaseGluconeogenesismedicine.diseaseMice Inbred C57BL030104 developmental biologyEndocrinologyGluconeogenesislow-carbohydrateInsulin ResistanceEnergy Metabolism[SDV.AEN]Life Sciences [q-bio]/Food and NutritionHomeostasis
researchProduct

Hunting for the high-affinity state of G-protein-coupled receptors with agonist tracers: Theoretical and practical considerations for positron emissi…

2019

Abstract The concept of the high‐affinity state postulates that a certain subset of G‐protein‐coupled receptors is primarily responsible for receptor signaling in the living brain. Assessing the abundance of this subset is thus potentially highly relevant for studies concerning the responses of neurotransmission to pharmacological or physiological stimuli and the dysregulation of neurotransmission in neurological or psychiatric disorders. The high‐affinity state is preferentially recognized by agonists in vitro. For this reason, agonist tracers have been developed as tools for the noninvasive imaging of the high‐affinity state with positron emission tomography (PET). This review provides an…

Central Nervous SystemBETA-ADRENERGIC-RECEPTORpositron emission tomographyagonist high-affinity stateD-2/3 AGONISTG-protein-coupled receptorsReview ArticleReceptors G-Protein-Coupledchemistry.chemical_compound0302 clinical medicineDrug DiscoveryReceptorNeurotransmitterReview Articles0303 health sciencesmedicine.diagnostic_testNONHUMAN PRIMATE BRAINEndocytosisTEST-RETEST REPRODUCIBILITYPositron emission tomographyG‐protein‐coupled receptors030220 oncology & carcinogenesisENDOGENOUS OPIOID RELEASEMolecular MedicineIN-VIVO BINDINGSignal TransductionAgonistNoninvasive imagingexperimental designmedicine.drug_classNeurotransmissionRAT-BRAINneurotransmittersagonist high‐affinity state03 medical and health sciencesIn vivomedicineAnimalsHumanshuman brain030304 developmental biologyG protein-coupled receptorPharmacologyDOPAMINE D2(HIGH) RECEPTORS5-HT1A RECEPTORSchemistryPositron-Emission TomographyPET RADIOLIGANDRadiopharmaceuticalsNeuroscienceMedicinal research reviews
researchProduct

Modulation of brain PUFA content in different experimental models of mice.

2016

International audience; The relative amounts of arachidonic acid (AA) and docosahexaenoic acid (DHA) govern the different functions of the brain. Their brain levels depend on structures considered, on fatty acid dietary supply and the age of animals. To have a better overview of the different models available in the literature we here compared the brain fatty acid composition in various mice models (C57BL/6J, CD1, Fat-1, SAMP8 mice) fed with different n-3 PUFA diets (deficient, balanced, enriched) in adults and aged animals. Our results demonstrated that brain AA and DHA content is 1) structure-dependent; 2) strain-specific; 3) differently affected by dietary approaches when compared to gen…

0301 basic medicineMaleAgingClinical Biochemistryfat-1 miceHippocampuschemistry.chemical_compoundMice0302 clinical medicineCerebellumDocosahexaenoic acid (DHA)fatty-acid-compositionFood science2. Zero hungerchemistry.chemical_classificationCerebral CortexArachidonic Acidanxiety-like behaviordocosahexaenoic acidaccelerated mouse samBiochemistryDocosahexaenoic acidArachidonic acid (AA)Arachidonic acidFemaleFatty acid compositionSAMP8 miceBrain regionsPolyunsaturated fatty acidN-3 PUFAdiet-induced obesityDocosahexaenoic AcidsHypothalamusPrefrontal CortexBiology03 medical and health sciencesrat-brainDietary Fats UnsaturatedGenetic modelAnimals[SDV.BBM]Life Sciences [q-bio]/Biochemistry Molecular Biology[ SDV.BBM ] Life Sciences [q-bio]/Biochemistry Molecular BiologyN 3 pufaBrain Chemistryage-related-changesFatty acidCell BiologyModels Theoreticalgene-expressiondepressive-like behaviorMice Inbred C57BL030104 developmental biologychemistry030217 neurology & neurosurgeryBrain StemProstaglandins, leukotrienes, and essential fatty acids
researchProduct