Search results for "Reflection"
showing 10 items of 645 documents
Tunable optical sectioning in confocal microscopy by use of symmetrical defocusing and apodization
2008
We present two novel optical methods to achieve a significative improvement in the optical-sectioning capacity of confocal scanning microscopes. The techniques, whose real power is the simplicity with which they can be implemented, consist of a suitable combination of symmetrical defocusing with two different manners of apodizing both parts of the confocal architecture. It is shown that the proposed techniques are useful in both the bright-field and the fluorescence modes and for reflection and transmission geometries.
Colloidal plasmonic back reflectors for light trapping in solar cells.
2014
A novel type of plasmonic light trapping structure is presented in this paper, composed of metal nanoparticles synthesized in colloidal solution and self-assembled in uniform long-range arrays using a wet-coating method. The high monodispersion in size and spherical shape of the gold colloids used in this work allows a precise match between their measured optical properties and electromagnetic simulations performed with Mie theory, and enables the full exploitation of their collective resonant plasmonic behavior for light-scattering applications. The colloidal arrays are integrated in plasmonic back reflector (PBR) structures aimed for light trapping in thin film solar cells. The PBRs exhib…
“Ab-initio” structure solution of nano-crystalline minerals and synthetic materials by automated electron tomography
2012
Most of the newly discovered mineral phases, as well as many new synthesized industrial materials, appear only in the form of nano crystals, with a size not sufficient for single-crystal x-ray structure analysis. The development of techniques able to investigate the structure of nano crystalline materials is therefore one of the most important frontiers of crystallography. The most widespread technique providing relatively fast and well consolidated routes for structure analysis of bulk materials is x-ray powder diffraction (XRPD). Nevertheless, XRPD suffers from intrinsic 1-dimension reduction of information that greatly limits its applicability in presence of peak broadening and overlappi…
Etched LPFGs in reflective configuration for sensitivity and attenuation band depth increase
2016
A reflection configuration setup for long-period fiber gratings is presented. It permits to obtain a unique band with attenuation double than that obtained in transmission configuration, which is interesting for applications where this value is reduced (e.g., the mode transition phenomenon). The method is based on the deposition of a silver mirror at the end of the optical fiber, which permits to absorb the power transmitted through cladding modes and to avoid the generation of interferometric bands. The method also solves the requirement of a precise cleave or to polish the end of the grating, a drawback present in other publications. The versatility of the setup has been proved by applica…
Multi-spectral Reflection Photoplethysmography: Potential for Skin Microcirculation Assessment
2006
Technique for simultaneous recording of reflection photoplethysmography signals in broad spectral band (violet to NIR) has been developed, and its potential for assessment of blood microcirculation at various depths from the skin surface is discussed.
Optical modeling of nickel-base alloys oxidized in pressurized water reactor
2012
International audience; The knowledge of the aging process involved in the primary water of pressurized water reactor entails investigating a mixed growth mechanism in the corrosion of nickel-base alloys. A mixed growth induces an anionic inner oxide and a cationic diffusion parallel to a dissolution-precipitation process forms the outer zone. The in situ monitoring of the oxidation kinetics requires the modeling of the oxide layer stratification with the full knowledge of the optical constants related to each component. Here, we report the dielectric constants of the alloys 600 and 690 measured by spectroscopic ellipsometry and fitted to a Drude-Lorentz model. A robust optical stratificati…
High-Pressure Softening of the Out-of-Plane A2u(Transverse-Optic) Mode of Hexagonal Boron Nitride Induced by Dynamical Buckling
2019
We investigate the highly anisotropic behavior of the in-plane and out-of-plane infrared-active phonons of hexagonal boron nitride by means of infrared reflectivity and absorption measurements under high pressure. Infrared reflectivity spectra at normal incidence on high-quality single crystals show strict fulfillment of selection rules and an unusually long E1u[transverse-optic (TO)] phonon lifetime. Accurate values of the dielectric constants at ambient pressure ϵ0= 6.96, ϵ∞= 4.95, ϵ 0= 3.37, and ϵ∞ = 2.84 have been determined from fits to the reflectivity spectra. The out-of-plane A2u phonon reflectivity band is revealed in measurements on an inclined facet, and absorption measurements a…
Photoluminescence of chromium(III)-doped silicoaluminophosphate with AFI structure
1994
Reflection-refraction effects on light distribution inside tubular photobioreactors
2017
One of the main parameters affecting autotrophic algae cultures is photon absorption distribution inside the photobioreactor. This clearly depends on the geometry of both the radiation source and the photobioreactor, as well as on algae suspension optical properties. In this work the local volumetric rate of photon absorption LVRPA in a cross-section of a horizontal-pipe photobioreactor was investigated by means of simplified Monte Carlo simulations. In particular, the fate of a number of photons perpendicularly hitting the photobioreactor circular section was simulated in relation to different values of algae concentration. The model takes into account refraction/reflection phenomena at th…
Ultrahigh-Q Tunable Whispering-Gallery-Mode Microresonator
2009
Typical microresonators exhibit a large frequency spacing between resonances and a limited tunability. This impedes their use in a large class of applications which require a resonance of the microcavity to coincide with a predetermined frequency. Here, we experimentally overcome this limitation with highly prolate-shaped whispering-gallery-mode "bottle microresonators" fabricated from standard optical glass fibers. Our resonators combine an ultra-high quality factor of 360 million, a small mode volume, and near lossless fibre coupling, characteristic of whispering-gallery-mode resonators, with a simple and customizable mode structure enabling full tunability.