Search results for "Resorcinarenes"
showing 10 items of 23 documents
Recognition of N-Alkyl- and N-Aryl-Acetamides by N-Alkyl Ammonium Resorcinarene Chlorides
2014
N-alkyl ammonium resorcinarene chlorides are stabilized by an intricate array of intra- and intermolecular hydrogen bonds that leads to cavitand-like structures. Depending on the upper-rim substituents, self-inclusion was observed in solution and in the solid state. The self-inclusion can be disrupted at higher temperatures, whereas in the presence of small guests the self-included dimers spontaneously reorganize to 1:1 host-guest complexes. These host compounds show an interesting ability to bind a series of N-alkyl acetamide guests through intermolecular hydrogen bonds involving the carbonyl oxygen (C=O) atoms and the amide (NH) groups of the guests, the chloride anions (Cl(-)) and ammoni…
The Structural Diversity of Benzofuran Resorcinarene Leads to Enhanced Fluorescence
2014
An unexpected and previously unknown resorcinarene mono-crown with a fused benzofuran moiety in its macrocyclic core was obtained as a byproduct from a bridging reaction of tetramethoxy resorcinarene with tetraethylene glycol ditosylate. The formation of the fused benzofuran moiety in the resorcinarene macrocycle resulted in a unique rigid and puckered boat conformation, as shown by XRD studies in the solid state. Modification of the macrocycle was also observed to affect the photophysical properties in solution by enhancing the fluorescence brightness compared with a conventional resorcinarene macrocycle. The fluorescent properties enabled unique detection of structural features, that is, …
Correlating Solution‐ and Solid‐State Structures of Conformationally Flexible Resorcinarenes: Significance of a Sulfonyl Group in Intramolecular Self…
2020
Abstract The synthesis of tetramethoxyresorcinarene podands bearing p‐toluene arms connected by ‐SO3‐ (1) and ‐CH2O‐ (2) linkers is presented herein. In the solid state, the resorcinarene podand 1 forms an intramolecular self‐inclusion complex with the pendant p‐toluene group of a podand arm, whereas the resorcinarene podand 2 does not show self‐inclusion. The conformations of the flexible resorcinarene podands in solution were investigated by variable‐temperature experiments using 1D and 2D NMR spectroscopic techniques as well as by computational methods, including a conformational search and subsequent DFT optimisation of representative structures. The 1H NMR spectra of 1 and 2 at room te…
Anion-driven encapsulation of cationic guests inside pyridine[4]arene dimers
2019
Pyridine[4]arenes have previously been considered as anion binding hosts due to the electron-poor nature of the pyridine ring. Herein, we demonstrate the encapsulation of Me4N+ cations inside a dimeric hydrogen-bonded pyridine[4]arene capsule, which contradicts with earlier assumptions. The complexation of a cationic guest inside the pyridine[4]arene dimer has been detected and studied by multiple gas-phase techniques, ESI-QTOF-MS, IRMPD, and DT-IMMS experiments, as well as DFT calculations. The comparison of classical resorcinarenes with pyridinearenes by MS and NMR experiments reveals clear differences in their host–guest chemistry and implies that cation encapsulation in pyridine[4]arene…
Host–guest complexes of conformationally flexible C-hexyl-2-bromoresorcinarene and aromatic N-oxides: solid-state, solution and computational studies
2018
Host–guest complexes of C-hexyl-2-bromoresorcinarene (BrC6) with twelve potential aromatic N-oxide guests were studied using single crystal X-ray diffraction analysis and 1H NMR spectroscopy. In the solid state, of the nine obtained X-ray crystal structures, eight were consistent with the formation of BrC6-N-oxide endo complexes. The lone exception was from the association between 4-phenylpyridine N-oxide and BrC6, in that case the host forms a self-inclusion complex. BrC6, as opposed to more rigid previously studied C-ethyl-2-bromoresorcinarene and C-propyl-2-bromoresorcinarene, undergoes remarkable cavity conformational changes to host different N-oxide guests through C–H···π(host) intera…
Halogen Bonded Analogues of Deep Cavity Cavitands
2014
The first examples of halogen bonded analogues of deep cavity cavitands with guest binding properties, formed between N-alkyl ammonium resorcinarene halides as acceptors and bromotrichloromethane as the donor, are reported in the solid state and in solution.
A perspective to resorcinarene crowns
2014
In this report, we have summarized different synthesis methods of the resorcinarene crowns, discussed their structural and complexation properties together with the possible application aspects. peerReviewed
A Halogen-Bonded Dimeric Resorcinarene Capsule.
2015
Iodine (I2) acts as a bifunctional halogen-bond donor connecting two macrocyclic molecules of the bowl-shaped halogen-bond acceptor, N-cyclohexyl ammonium resorcinarene chloride 1, to form the dimeric capsule [(1,4-dioxane)3@1(2)(I2)2]. The dimeric capsule is constructed solely through halogen bonds and has a single cavity (V=511 Å(3)) large enough to encapsulate three 1,4-dioxane guest molecules.
Hydrogen bond-stabilised N-alkylammonium resorcinarene halide cavitands
2010
A family of hydrogen bond-stabilised N-alkylammonium resorcinarene chloride and bromide cavitands were synthesised and characterised with 1H NMR and ESI mass spectrometry. The seven compounds exhibit interestingly either self-inclusion or guest complexation in the solid state evidenced by single crystal X-ray diffraction. The four dimers show self-inclusion of the upper rim propyl chains and consist of two hydrogen-bonded resorcinarene tetracations and six halide anions, while the remaining two halide anions are located in between the dimers linking them via hydrogen bonding. Small solvent molecules such as dichloromethane, methanol, n-butanol or chloroform are complexed into the resorcinar…
High-affinity and selective detection of pyrophosphate in water by a resorcinarene salt receptor
2017
N-Alkyl ammonium resorcinarenes selectively bind pyrophosphate in pure water with an exceptionally high binding constant of up to 1.60 × 107 M–1, three orders of magnitude higher than ATP.