Search results for "Reversed electrodialysis"

showing 10 items of 53 documents

Flow and mass transfer in spacer-filled channels for reverse electrodialysis: a CFD parametrical study

2016

Abstract In reverse electrodialysis (RED) concentration polarization phenomena and pressure drop affect strongly the power output obtainable; therefore the channel geometry has a crucial impact on the system optimization. Both overlapped and woven spacers are commonly commercialised and adopted for RED experiments; the latter exhibit some potential advantages, such as better mixing and lower shadow effect, but they have been poorly investigated in the literature so far. In this work, computational fluid dynamics was used to predict fluid flow and mass transfer in spacer-filled channels for RED applications. A parametric analysis for different spacer geometries was carried out: woven (w) and…

Settore ING-IND/26 - Teoria Dello Sviluppo Dei Processi ChimiciSpacer-filled channelSettore ING-IND/25 - Impianti ChimiciMixing (process engineering)Filtration and Separation02 engineering and technologyCFD; Concentration polarization; Mass transfer; Reverse electrodialysis (RED); Spacer-filled channel; Physical and Theoretical Chemistry; Materials Science (all); Biochemistry; Filtration and SeparationBiochemistryProtein filamentsymbols.namesake020401 chemical engineeringReversed electrodialysisMass transferFluid dynamicsGeneral Materials ScienceMass transfer0204 chemical engineeringPhysical and Theoretical ChemistryConcentration polarizationSettore ING-IND/19 - Impianti NucleariConcentration polarizationPressure dropSettore ING-IND/24 - Principi Di Ingegneria ChimicaChromatographyChemistryReverse electrodialysis (RED)Reynolds numberMechanics021001 nanoscience & nanotechnologysymbolsMaterials Science (all)0210 nano-technologyCFD
researchProduct

CFD analysis of the fluid flow behavior in a reverse electrodialysis stack

2012

Salinity Gradient Power by Reverse Electrodialysis (SGP-RE) technology allows the production of electricity from the different chemical potentials of two differently concentrated salty solutions flowing in alternate channels suitably separated by selective ion exchange membranes. In SGP-RE, as well as in conventional ElectroDialysis (ED) technology, the process performance dramatically depends on the stack geometry and the internal fluid dynamics conditions: optimizing the system geometry in order to guarantee lower pressure drops (DP) and uniform flow rates distribution within the channels is a topic of primary importance. Although literature studies on Computational Fluid Dynamics (CFD) a…

Settore ING-IND/26 - Teoria Dello Sviluppo Dei Processi ChimiciSpacer-filled channelSettore ING-IND/25 - Impianti ChimiciOcean Engineering02 engineering and technology010501 environmental sciencesComputational fluid dynamics01 natural sciencesStack (abstract data type)Reversed electrodialysisFluid dynamicsOsmotic powerStack designPressure dropSettore ING-IND/19 - Impianti NucleariSimulation0105 earth and related environmental sciencesWater Science and Technologybusiness.industryChemistryModelingProcess (computing)MechanicsElectrodialysis021001 nanoscience & nanotechnologyPollution6. Clean waterCFD; Modeling; Stack design; Pressure drops; Spacer-filled channelSettore ING-IND/06 - FluidodinamicaPotential flowCFD0210 nano-technologybusinessDesalination and Water Treatment
researchProduct

Reverse electrodialysis with NH4HCO3-water systems for heat-to-power conversion

2017

Abstract A Reverse ElectroDialysis Heat Engine (REDHE) system operating with “thermolytic” ammonium hydrogen-carbonate (NH4HCO3) aqueous solutions as working fluids is studied. The engine is constituted by (i) a RED unit to produce electric power by mixing the solutions at different salinity and (ii) a thermally-driven regeneration unit including a stripping and an absorption column to restore the initial salinity gradient thus closing the cycle. In the present work only the RED unit and the stripping column are taken into account. In particular, a simplified integrated process model for the whole cycle was developed: it consists of (i) a lumped parameter model for the RED unit validated wi…

Settore ING-IND/26 - Teoria Dello Sviluppo Dei Processi ChimiciStripping (chemistry)Salinity gradient power (SGP)020209 energyAnalytical chemistry02 engineering and technology7. Clean energyThermolytic saltIndustrial and Manufacturing EngineeringWaste heat recovery unitReversed electrodialysisThermal0202 electrical engineering electronic engineering information engineeringElectrical and Electronic EngineeringClosed-loop reverse electrodialysiWaste heat recoveryAmmonium hydrogen carbonateCivil and Structural EngineeringPower densityHeat engineWaste managementChemistryMechanical EngineeringAmmonium hydrogen carbonate; Closed-loop reverse electrodialysis; Reverse ElectroDialysis Heat Engine (REDHE); Salinity gradient power (SGP); Thermolytic salts; Waste heat recovery; Civil and Structural Engineering; Building and Construction; Pollution; Energy (all); Mechanical Engineering; Industrial and Manufacturing Engineering; Electrical and Electronic EngineeringBuilding and ConstructionElectrodialysis021001 nanoscience & nanotechnologyPollution6. Clean waterEnergy (all)General EnergyReverse ElectroDialysis Heat Engine (REDHE)Electric power0210 nano-technology
researchProduct

Bipolar membrane reverse electrodialysis for the sustainable recovery of energy from pH gradients of industrial wastewater: Performance prediction by…

2021

Abstract The theoretical energy density extractable from acidic and alkaline solutions is higher than 20 kWh m−3 of single solution when mixing 1 M concentrated streams. Therefore, acidic and alkaline industrial wastewater have a huge potential for the recovery of energy. To this purpose, bipolar membrane reverse electrodialysis (BMRED) is an interesting, yet poorly studied technology for the conversion of the mixing entropy of solutions at different pH into electricity. Although it shows promising performance, only few works have been presented in the literature so far, and no comprehensive models have been developed yet. This work presents a mathematical multi-scale model based on a semi-…

Settore ING-IND/26 - Teoria Dello Sviluppo Dei Processi ChimiciWork (thermodynamics)pH gradient energyEnvironmental Engineering0208 environmental biotechnologyMixing (process engineering)02 engineering and technologyWastewater010501 environmental sciencesManagement Monitoring Policy and Law01 natural sciencesIndustrial wastewater treatmentElectricityRiversion-exchange membraneReversed electrodialysisPerformance predictionProcess engineeringelectro-membrane proceWaste Management and Disposal0105 earth and related environmental sciencesPower densitybusiness.industryProton-Motive ForceMembranes Artificialbipolar membrane reverse electrodialysisGeneral Medicinewastewater valorisation020801 environmental engineeringMembraneEnvironmental sciencebusinessEfficient energy useJournal of Environmental Management
researchProduct

CFD prediction of scalar transport in thin channels for reverse electrodialysis

2014

Reverse ElectroDialysis (RED) is a very promising technology allowing the electrochemical potential difference of a salinity gradient to be directly converted into electric energy. The fluid dynamics optimization of the thin channels used in RED is still an open problem. The present preliminary work focuses on the Computational Fluid Dynamics (CFD) simulation of the flow and concentration fields in these channels. In particular three different configurations were investigated: a channel unprovided with a spacer (empty channel) and two channels filled with spacers, one made of overlapped filaments the other of woven filaments. The transport of two passive scalars, representative of the ions …

Settore ING-IND/26 - Teoria Dello Sviluppo Dei Processi Chimicibusiness.industryChemistrySettore ING-IND/25 - Impianti ChimiciScalar (mathematics)Ocean EngineeringMechanicsCFD Salinity Gradient Power renewable energy Reverse Electro Dialysis water electric energy spacer woven polarization concentration concentration boundary layer.Computational fluid dynamicsElectrodialysisPollutionReversed electrodialysisFluid dynamicsOsmotic powerElectronic engineeringSettore ING-IND/06 - FluidodinamicaPeriodic boundary conditionsbusinessWater Science and TechnologyConcentration polarization
researchProduct

Reverse Electrodialysis: Applications to Different Case Studies

2018

Salinity gradient is a non-conventional renewable energy form which is widely available worldwide. Reverse Electrodialysis is a promising and innovative technology able to convert directly this chemical renewable energy into electricity. This paper presents a number of different scenarios where salinity gradients are naturally available or they result from industrial/urban activities. A sophisticated model accounting for all the main phenomena (including all the detrimental ones) occurring within a Reverse Electrodialysis unit has been purposely developed. The model is used to calculate how much electric energy can be harvested from the above-mentioned salinity gradients.

Settore ING-IND/26 - Teoria Dello Sviluppo Dei Processi Chimicibusiness.industryEnvironmental engineering02 engineering and technology010501 environmental sciences021001 nanoscience & nanotechnology01 natural sciencesRenewable energySalinityElectric energyReversed electrodialysisMembrane Open-loop RED Reverse Electrodialysis Salinity Gradient PowerEnvironmental scienceElectricity0210 nano-technologybusiness0105 earth and related environmental sciences
researchProduct

Electrodialysis Applications in Wastewater Treatment for Environmental Protection and Resources Recovery: A Systematic Review on Progress and Perspec…

2020

This paper presents a comprehensive review of studies on electrodialysis (ED) applications in wastewater treatment, outlining the current status and the future prospect. ED is a membrane process of separation under the action of an electric field, where ions are selectively transported across ion-exchange membranes. ED of both conventional or unconventional fashion has been tested to treat several waste or spent aqueous solutions, including effluents from various industrial processes, municipal wastewater or salt water treatment plants, and animal farms. Properties such as selectivity, high separation efficiency, and chemical-free treatment make ED methods adequate for desalination and othe…

Settore ING-IND/26 - Teoria Dello Sviluppo Dei Processi Chimicireverse electrodialysisbrine valorisationBipolar membrane electrodialysis Brine valorisation Electro-membrane process Electrodeionisation Electrodialysis metathesis Electrodialysis reversal Monovalent selective membranes Reverse electrodialysis Selectrodialysis Water reuseFiltration and Separation02 engineering and technologyReview010501 environmental scienceswater reuselcsh:Chemical technologyelectrodialysis metathesis01 natural sciences7. Clean energyDesalination12. Responsible consumptionselectrodialysiselectrodeionisationReversed electrodialysiselectrodialysis reversalChemical Engineering (miscellaneous)lcsh:TP1-1185lcsh:Chemical engineeringEffluentelectro-membrane process0105 earth and related environmental sciencesbipolar membrane electrodialysisElectrodialysis reversalWaste managementProcess Chemistry and Technologymonovalent selective membraneslcsh:TP155-156Electrodialysis021001 nanoscience & nanotechnology6. Clean waterWastewater13. Climate actionEnvironmental scienceSewage treatmentValorisation0210 nano-technologyMembranes
researchProduct

Towards the first proof of the concept of a Reverse ElectroDialysis - Membrane Distillation Heat Engine

2019

Abstract The coupling of Reverse Electrodialysis with Membrane Distillation is a promising option for the conversion of waste heat into electricity. This study evaluates the performances of the integrated system under different operating conditions, employing validated model and correlations. This work provides a detailed description of the behaviour of a real RED-MD heat engine and indicates the set of inlet concentrations, velocities and equipment size which returns the highest cycle exergy efficiency. These operating conditions were selected for the pilot plant developed within the EU-funded project RED Heat to Power. For the first time, a perspective analysis was also included, consider…

Work (thermodynamics)020209 energyGeneral Chemical EngineeringReverse Electrodialysis Heat EngineMembrane distillation02 engineering and technologyMembrane distillation7. Clean energyWaste heat recovery unitReversed electrodialysisWaste heatReverse electrodialysi0202 electrical engineering electronic engineering information engineeringOsmotic powerGeneral Materials ScienceChemical Engineering (all)Process engineeringSalinity Gradient PowerWaste heat recoveryHeat engineWater Science and Technologybusiness.industryMechanical EngineeringChemistry (all)General Chemistry021001 nanoscience & nanotechnology6. Clean waterReverse ElectroDialysisExergy efficiencyEnvironmental scienceMaterials Science (all)0210 nano-technologybusiness
researchProduct

Thermolytic reverse electrodialysis heat engine: model development, integration and performance analysis

2019

Abstract Salinity gradient heat engines represent an innovative and promising way to convert low-grade heat into electricity by employing salinity gradient technology in a closed-loop configuration. Among the aqueous solutions which can be used as working fluid, ammonium bicarbonate-water solutions appear very promising due to their capability to decompose at low temperature. In this work, an experimentally validated model for a reverse electrodialysis heat engine fed with ammonium bicarbonate-water solutions was developed. The model consists of two validated sub-models purposely integrated, one for the reverse electrodialysis unit and the other for the stripping/absorption regeneration uni…

Work (thermodynamics)Absorption (acoustics)Settore ING-IND/26 - Teoria Dello Sviluppo Dei Processi ChimiciMaterials science020209 energySettore ING-IND/25 - Impianti ChimiciEnergy Engineering and Power Technology02 engineering and technology7. Clean energyStripping (fiber)020401 chemical engineeringReversed electrodialysis0202 electrical engineering electronic engineering information engineering0204 chemical engineeringProcess engineeringHeat engineThermolytic salts Salinity gradient heat engine Regeneration unit Reverse electrodialysis Ammonium bicarbonate solutions Waste heat recoveryRenewable Energy Sustainability and the Environmentbusiness.industry6. Clean waterFuel TechnologyMembraneNuclear Energy and EngineeringExergy efficiencyWorking fluidbusinessEnergy Conversion and Management
researchProduct

Membrane Deformation and Its Effects on Flow and Mass Transfer in the Electromembrane Processes

2019

In the membrane processes, a trans-membrane pressure (TMP) may arise due to design features or operating conditions. In most applications, stacks for electrodialysis (ED) or reverse electrodialysis (RED) operate at low TMP (&lt

Work (thermodynamics)Chemical Phenomenareverse electrodialysis02 engineering and technologyCFD; electrodialysis; fluid-structure interaction; ion exchange membrane; mass transfer; pressure drop; profiled membrane; reverse electrodialysis; structural mechanics;Physical Phenomenalcsh:ChemistryFluid dynamicsBiology (General)lcsh:QH301-705.5SpectroscopyGeneral MedicineMechanicsElectrodialysis021001 nanoscience & nanotechnologyComputer Science ApplicationsChemistry0210 nano-technologyTransport phenomenaCFDreverse electrodialysiion exchange membraneSettore ING-IND/26 - Teoria Dello Sviluppo Dei Processi ChimiciMaterials scienceQH301-705.5fluid-structure interactionComputational fluid dynamicsDeformation (meteorology)CatalysisArticleInorganic Chemistry020401 chemical engineeringstructural mechanicsReversed electrodialysisMass transfermass transferstructural mechanic0204 chemical engineeringPhysical and Theoretical ChemistryelectrodialysisMolecular BiologyQD1-999Settore ING-IND/19 - Impianti NucleariMechanical Phenomenapressure dropprofiled membranebusiness.industryOrganic ChemistryMembranes Artificiallcsh:Biology (General)lcsh:QD1-999electrodialysiHydrodynamicsbusinessSettore ICAR/08 - Scienza Delle Costruzioni
researchProduct