Search results for "S-"
showing 10 items of 16104 documents
On the mechanics of magnetic fluids with field-induced phase transition: application to Couette flow
2018
The influence of Brownian diffusion and magnetophoresis, which are followed by phase transition, on the characteristics of a stationary plane Couette flow of magnetic fluid in a non-uniform magnetic field is discussed. The phase transition conditions in magnetic fluids are assumed as a natural restriction to the particle concentration increase in a non-uniform magnetic field. Profiles of the particles' concentration are calculated, and dependences of the volume magnetic force and of the viscous force are established. © 2018 Institute of Physics, University of Latvia.
High-frequency EPR study on Cu4Cu- and Co4Co-metallacrown complexes
2019
Abstract High-frequency/high-field electron paramagnetic resonance studies on two homonuclear 12-MC-4 metallacrown complexes Cu4Cu and Co4Co are presented. For Cu4Cu, our data imply axial-type g-anisotropy with g x = 2.03 ± 0.01 , g y = 2.04 ± 0.01 , and g z = 2.23 ± 0.01 , yielding g = 2.10 ± 0.02 . No significant zero field splitting (ZFS) of the ground state mode is observed. In Co4Co, we find a m S = ± 3 / 2 ground state with g = 2.66 . The data suggest large anisotropy D of negative sign.
Commissioning of the vacuum system of the KATRIN Main Spectrometer
2016
The KATRIN experiment will probe the neutrino mass by measuring the β-electron energy spectrum near the endpoint of tritium β-decay. An integral energy analysis will be performed by an electro-static spectrometer (``Main Spectrometer''), an ultra-high vacuum vessel with a length of 23.2 m, a volume of 1240 m[superscript 3], and a complex inner electrode system with about 120 000 individual parts. The strong magnetic field that guides the β-electrons is provided by super-conducting solenoids at both ends of the spectrometer. Its influence on turbo-molecular pumps and vacuum gauges had to be considered. A system consisting of 6 turbo-molecular pumps and 3 km of non-evaporable getter strips ha…
Accumulation of positrons from a LINAC based source
2020
International audience; The GBAR experiment aims to measure the gravitational acceleration of antihydrogen H̅. It will use H̅+ ions formed by the interaction of antiprotons with a dense positronium cloud, which will require about 1010 positrons to produce one H̅+. We present the first results on the positron accumulation, reaching 3.8±0.4×108 e+ collected in 560 s.
Multiscale model approach for magnetization dynamics simulations
2016
Simulations of magnetization dynamics in a multiscale environment enable the rapid evaluation of the Landau-Lifshitz-Gilbert equation in a mesoscopic sample with nanoscopic accuracy in areas where such accuracy is required. We have developed a multiscale magnetization dynamics simulation approach that can be applied to large systems with spin structures that vary locally on small length scales. To implement this, the conventional micromagnetic simulation framework has been expanded to include a multiscale solving routine. The software selectively simulates different regions of a ferromagnetic sample according to the spin structures located within in order to employ a suitable discretization…
Charge breeding at GANIL: Improvements, results, and comparison with the other facilities
2019
International audience; The 1+/n+ method, based on an ECRIS charge breeder (CB) originally developed at the LPSC laboratory, is now implemented at GANIL for the production of Radioactive Ion Beams (RIBs). Prior to its installation in the middle of the low energy beam line of the SPIRAL1 facility, the 1+/n+ system CB has been modified based on the experiments performed on the CARIBU Facility at Argone National Laboratory. Later, it has been tested at the 1+/n+ LPSC test bench to validate its operation performances. Charge breeding efficiencies as well as charge breeding times have been measured for noble gases and alkali elements. The commissioning phase started at GANIL in the second half-y…
Effects of magnetic configuration on hot electrons in a minimum-B ECR plasma
2020
International audience; To investigate the hot electron population and the appearance of kinetic instabilities in highly charged electron cyclotron resonance ion source (ECRIS), the axially emitted bremsstrahlung spectra and microwave bursts emitted from ECRIS plasma were synchronously measured on SECRAL-II (Superconducting ECR ion source with Advanced design in Lanzhou No. II) ion source with various magnetic field configurations. The experimental results show that when the ratio of the minimum field to the resonance field (i.e. Bmin/Becr ) is less than ~0.8, the bremsstrahlung spectral temperature Ts increases linearly with the Bmin/Becr –ratio when the injection, extraction and radial mi…
Topological two-dimensional Su–Schrieffer–Heeger analog acoustic networks: Total reflection at corners and corner induced modes
2021
In this work, we investigate some aspects of an acoustic analogue of the two-dimensional Su-Schrieffer-Heeger model. The system is composed of alternating cross-section tubes connected in a square network, which in the limit of narrow tubes is described by a discrete model coinciding with the two-dimensional Su-Schrieffer-Heeger model. This model is known to host topological edge waves, and we develop a scattering theory to analyze how these waves scatter on edge structure changes. We show that these edge waves undergo a perfect reflection when scattering on a corner, incidentally leading to a new way of constructing corner modes. It is shown that reflection is high for a broad class of edg…
Enhanced acoustic pressure sensors based on coherent perfect absorber-laser effect
2021
Lasing is a well-established field in optics with several applications. Yet, having lasing or huge amplification in other wave systems remains an elusive goal. Here, we utilize the concept of coherent perfect absorber-laser to realize an acoustic analog of laser with a proven amplification of more than 10 4 in terms of the scattered acoustic signal at a frequency of a few kHz. The obtained acoustic laser (or the coherent perfect absorber-laser) is shown to possess extremely high sensitivity and figure of merit with regard to ultra-small variations of the pressure (density and compressibility) and suggests its evident potential to build future acoustic pressure devices such as precise sensor…
Thermal cloaking of complex objects with the neutral inclusion and the coordinate transformation methods
2019
We explore the cloaking of a complex shape by either the neutral inclusion or the transformation thermodynamics (TT) methods. Thin cloaks are built and the heat cloaking efficiency is investigated for both the steady-state and the transient regimes. We show that the neutral inclusion cloak is more efficient in both regimes, though it has the drawback that the thermal conductivity of the cloaked shape must be known. In practice, the neutral inclusion method is more flexible and easier to implement than the coordinate transformation method, especially for complex shapes.We explore the cloaking of a complex shape by either the neutral inclusion or the transformation thermodynamics (TT) methods…