Search results for "SCALE"

showing 10 items of 5180 documents

Nanoparticle dispersion in liquid metals by electromagnetically induced acoustic cavitation

2016

Abstract Aim of this study is to investigate experimentally the effect of magnetically induced cavitation applied for the purpose of nanoparticle dispersion in liquid metals. The oscillating magnetic force due to the azimuthal induction currents and the axial magnetic field excites power ultrasound in the sample. If the fields are sufficiently high then it is possible to achieve the acoustic cavitation threshold in liquid metals. Cavitation bubble collapses are known to create microscale jets with a potential to break nanoparticle agglomerates and disperse them. The samples are solidified under the contactless ultrasonic treatment and later analyzed by electron microscopy and energy-dispers…

010302 applied physicsMaterials sciencePolymers and Plasticsbusiness.industryPhysics::Medical PhysicsUltrasoundMetallurgyMetals and AlloysNanoparticle02 engineering and technology021001 nanoscience & nanotechnology01 natural sciencesElectronic Optical and Magnetic MaterialsMagnetic fieldPhysics::Fluid DynamicsAgglomerateCavitation0103 physical sciencesCeramics and CompositesUltrasonic sensorMagnesium alloyComposite material0210 nano-technologybusinessMicroscale chemistryActa Materialia
researchProduct

Validation of mathematical model for CZ process using small-scale laboratory crystal growth furnace

2018

The present material is focused on the modelling of small-scale laboratory NaCl-RbCl crystal growth furnace. First steps towards fully transient simulations are taken in the form of stationary simulations that deal with the optimization of material properties to match the model to experimental conditions. For this purpose, simulation software primarily used for the modelling of industrial-scale silicon crystal growth process was successfully applied. Finally, transient simulations of the crystal growth are presented, giving a sufficient agreement to experimental results.

010302 applied physicsMaterials scienceScale (ratio)Mechanical engineeringCrystal growth02 engineering and technology021001 nanoscience & nanotechnologycomputer.software_genre01 natural sciencesSimulation softwareMonocrystalline siliconScientific method0103 physical sciencesTransient (oscillation)0210 nano-technologyMaterial propertiescomputerIOP Conference Series: Materials Science and Engineering
researchProduct

High spatial resolution strain measurements at the surface of duplex stainless steels

2007

International audience; The determination of local strain fields at the surface of materials is of major importance for understanding their reactivity. In the present paper, lithography is used to fabricate grid points at the microscale and to map strain gradients within grains and between grains. This method was applied to duplex stainless steels which exhibit heterogeneous strain distributions under straining conditions. The influence of various parameters (the specimen microstructure, the density of slip bands, the number of systems activated and the grid geometry) on the strain value was discussed.

010302 applied physicsMaterials science[ SPI.MAT ] Engineering Sciences [physics]/MaterialsMetallurgyLüders bandtechnology industry and agriculture02 engineering and technologySlip (materials science)Plasticity021001 nanoscience & nanotechnologyCondensed Matter PhysicsMicrostructure01 natural sciences[SPI.MAT]Engineering Sciences [physics]/Materials0103 physical sciences0210 nano-technologyLocal fieldLithographyImage resolutionMicroscale chemistryPhilosophical Magazine
researchProduct

High-frequency EPR study on Cu4Cu- and Co4Co-metallacrown complexes

2019

Abstract High-frequency/high-field electron paramagnetic resonance studies on two homonuclear 12-MC-4 metallacrown complexes Cu4Cu and Co4Co are presented. For Cu4Cu, our data imply axial-type g-anisotropy with g x = 2.03 ± 0.01 , g y = 2.04 ± 0.01 , and g z = 2.23 ± 0.01 , yielding g = 2.10 ± 0.02 . No significant zero field splitting (ZFS) of the ground state mode is observed. In Co4Co, we find a m S = ± 3 / 2 ground state with g = 2.66 . The data suggest large anisotropy D of negative sign.

010302 applied physicsPhysicsCondensed Matter - Materials ScienceCondensed Matter - Mesoscale and Nanoscale PhysicsMaterials Science (cond-mat.mtrl-sci)FOS: Physical sciences02 engineering and technologyZero field splitting021001 nanoscience & nanotechnologyCondensed Matter Physics01 natural sciencesHomonuclear moleculeElectronic Optical and Magnetic Materialslaw.inventionlawMesoscale and Nanoscale Physics (cond-mat.mes-hall)0103 physical sciencesAtomic physics0210 nano-technologyGround stateElectron paramagnetic resonanceAnisotropyMetallacrownJournal of Magnetism and Magnetic Materials
researchProduct

Switching by Domain-Wall Automotion in Asymmetric Ferromagnetic Rings

2017

A ring-shaped magnetic logic device offers two vortex states (clockwise and counterclockwise) to encode bits, with relative stability against external magnetic fields. The dynamics of magnetization switching in such structures, though, still need unraveling. The authors present direct experimental visualization of reproducible, robust switching in magnetic rings via domain-wall automotion, which does not require an applied field. Simulations reveal that annihilation of domain walls through automotion always occurs, with the detailed topology of the walls only influencing the dynamics locally, in line with the experimental results.

010302 applied physicsPhysicsField (physics)Condensed matter physicsMagnetic logicGeneral Physics and AstronomyLarge scale facilities for research with photons neutrons and ions01 natural sciencesVortexMagnetic fieldMagnetizationDomain wall (magnetism)Ferromagnetism0103 physical sciences010306 general physicsTopology (chemistry)Physical Review Applied
researchProduct

Multiscale model approach for magnetization dynamics simulations

2016

Simulations of magnetization dynamics in a multiscale environment enable the rapid evaluation of the Landau-Lifshitz-Gilbert equation in a mesoscopic sample with nanoscopic accuracy in areas where such accuracy is required. We have developed a multiscale magnetization dynamics simulation approach that can be applied to large systems with spin structures that vary locally on small length scales. To implement this, the conventional micromagnetic simulation framework has been expanded to include a multiscale solving routine. The software selectively simulates different regions of a ferromagnetic sample according to the spin structures located within in order to employ a suitable discretization…

010302 applied physicsPhysicsMesoscopic physicsMagnetization dynamicsCondensed Matter - Mesoscale and Nanoscale PhysicsScale (ratio)DiscretizationAttenuationFOS: Physical sciencesComputational Physics (physics.comp-ph)01 natural sciencesSpin waveMesoscale and Nanoscale Physics (cond-mat.mes-hall)0103 physical sciencesStatistical physics010306 general physicsPhysics - Computational PhysicsNanoscopic scaleSpin-½Physical Review B
researchProduct

2019

We present a design for producing precisely adjustable and alternating single-axis magnetic fields based on nested Halbach dipole pairs consisting of permanent magnets only. Our design allows for three dimensional optical and mechanical access to a region with strong adjustable dipolar fields, is compatible with systems operating under vacuum, and does not effectively dissipate heat under normal operational conditions. We present a theoretical analysis of the properties and capabilities of our design and construct a proof-of-concept prototype. Using our prototype, we demonstrate fields of up to several kilogauss with field homogeneities of better than 5%, which are harmonically modulated at…

010302 applied physicsPhysicsScale (ratio)Field (physics)AcousticsPolarimetryGeneral Physics and Astronomy02 engineering and technology021001 nanoscience & nanotechnology01 natural sciencesMagnetic fieldGenerator (circuit theory)DipoleMagnet0103 physical sciences0210 nano-technologyVariable (mathematics)AIP Advances
researchProduct

Topological two-dimensional Su–Schrieffer–Heeger analog acoustic networks: Total reflection at corners and corner induced modes

2021

In this work, we investigate some aspects of an acoustic analogue of the two-dimensional Su-Schrieffer-Heeger model. The system is composed of alternating cross-section tubes connected in a square network, which in the limit of narrow tubes is described by a discrete model coinciding with the two-dimensional Su-Schrieffer-Heeger model. This model is known to host topological edge waves, and we develop a scattering theory to analyze how these waves scatter on edge structure changes. We show that these edge waves undergo a perfect reflection when scattering on a corner, incidentally leading to a new way of constructing corner modes. It is shown that reflection is high for a broad class of edg…

010302 applied physicsPhysics[PHYS]Physics [physics]Total internal reflectionWork (thermodynamics)Condensed Matter - Mesoscale and Nanoscale PhysicsScatteringGeneral Physics and AstronomyClassical Physics (physics.class-ph)FOS: Physical sciencesPhysics - Classical Physics02 engineering and technologyEdge (geometry)021001 nanoscience & nanotechnologyTopology01 natural sciencesSquare (algebra)0103 physical sciencesMesoscale and Nanoscale Physics (cond-mat.mes-hall)Reflection (physics)Limit (mathematics)Scattering theory0210 nano-technologyComputingMilieux_MISCELLANEOUS
researchProduct

Nanoscale Etching of GaAs and InP in Acidic H<sub>2</sub>O<sub>2</sub> Solution: A Striking Contrast in Kinetics and Surface …

2018

In this study of nanoscale etching for state-of-the-art device technology the importance of the nature of the surface oxide, is demonstrated for two III-V materials. Etching kinetics for GaAs and InP in acidic solutions of hydrogen peroxide are strikingly different. GaAs etches much faster, while the dependence of the etch rate on the H+ concentration differs markedly for the two semiconductors. Surface analysis techniques provided information on the surface composition after etching: strongly non-stoichiometric porous (hydr)oxides on GaAs and a thin stoichiometric oxide that forms a blocking layer on InP. Reaction schemes are provided that allow one to understand the results, in particular…

010302 applied physicsReaction mechanismMaterials scienceKinetics02 engineering and technologyContrast (music)021001 nanoscience & nanotechnologyCondensed Matter Physics01 natural sciencesAtomic and Molecular Physics and OpticsChemical engineeringEtching (microfabrication)0103 physical sciencesGeneral Materials Science0210 nano-technologyNanoscopic scaleSolid State Phenomena
researchProduct

Interface evolution during magnetic pulse welding under extremely high strain rate collision: mechanisms, thermomechanical kinetics and consequences

2020

Abstract Magnetic pulse welding enables to produce perplexing interfacial morphologies due to the complex material response during the high strain rate collision. Thus, a thermomechanical model is used in this study to investigate the formation mechanism of the wake, vortex, swirling and mesoscale cavities with the increase of the impact intensity at the interface. The formation of these interfacial features are difficult to characterize by insitu methods, thus the origin of phenomena still remain a subject of open discussion. Our studies identify the governing mechanisms and the associated thermomechanical kinetics, which are responsible for the formation mechanism of interfacial features.…

010302 applied physicsShearing (physics)Materials sciencePolymers and PlasticsMetals and AlloysMesoscale meteorology02 engineering and technologyWeldingMechanicsWake021001 nanoscience & nanotechnology01 natural sciencesElectronic Optical and Magnetic Materialslaw.inventionVortexMagnetic pulse weldinglaw0103 physical sciencesCeramics and Composites0210 nano-technologyAdiabatic processEjectaActa Materialia
researchProduct