Search results for "SCATTERING"

showing 10 items of 8332 documents

A Study of Milk Particles Size Variation with pH Change using Dynamic Light Scattering

2019

A very simple experimental setup for a Dynamic Light Scattering measurement was used to measure the average size of the milk proteins in aqueous suspensions at 20 °C. The PH of the suspensions was adjusted using Calcium lactate, in its most common form of pentahydrate C6H10CaO6•5H2O. The mean size variation of the suspended particles in time has been monitored and reveals a fast increase over a time interval of less than ten of seconds.

010309 opticsMaterials scienceVariation (linguistics)Dynamic light scatteringlcsh:TA1-2040Chemical physics0103 physical sciences02 engineering and technologylcsh:Engineering (General). Civil engineering (General)021001 nanoscience & nanotechnology0210 nano-technology01 natural sciencesMATEC Web of Conferences
researchProduct

Localization of alkali metal ions in sodium-promoted palladium catalysts as studied by low energy ion scattering and transmission electron microscopy

1996

Three series of palladium-based catalysts have been studied by Low Energy Ion Scattering (LEIS) and Transmission Electron Microscopy (TEM). The first series is comprised of Na-Pd/SiO{sub 2} catalysts, obtained by addition of palladium to a silica support and by further addition of sodium ions with a Na/Pd atomic ratio (R) equal to 0,6.4 and 25.6. The second series consists of palladium catalysts supported on natural pumice, in which, due to a different loading of supported palladium, R{prime}, the (Na+K)/Pd atomic ratio, is equal to 17.0 and 39.4. The third series is represented by two palladium-based catalysts supported on {open_quotes}model pumices,{close_quotes} synthetic silico-aluminat…

010405 organic chemistryChemistryInorganic chemistrychemistry.chemical_element[CHIM.CATA]Chemical Sciences/Catalysis010402 general chemistryAlkali metal01 natural sciencesCatalysis0104 chemical sciencesCatalysisIonMetalTransition metalLow-energy ion scatteringvisual_artvisual_art.visual_art_mediumAtomic ratioPhysical and Theoretical ChemistryPalladium
researchProduct

Controlled time integration for the numerical simulation of meteor radar reflections

2016

We model meteoroids entering the Earth[U+05F3]s atmosphere as objects surrounded by non-magnetized plasma, and consider efficient numerical simulation of radar reflections from meteors in the time domain. Instead of the widely used finite difference time domain method (FDTD), we use more generalized finite differences by applying the discrete exterior calculus (DEC) and non-uniform leapfrog-style time discretization. The computational domain is presented by convex polyhedral elements. The convergence of the time integration is accelerated by the exact controllability method. The numerical experiments show that our code is efficiently parallelized. The DEC approach is compared to the volume …

010504 meteorology & atmospheric sciencesComputer scienceMETEORPLASMATIC OBJECTSRADAR REFLECTIONS01 natural sciencesplasmatic objectslaw.inventionINTEGRAL EQUATIONSlawRadar010303 astronomy & astrophysicsSpectroscopyEARTH ATMOSPHEREvolume integral equationRadiationPLASMANUMERICAL MODELSMathematical analysisFinite differenceNUMERICAL METHODMETEORSAtomic and Molecular Physics and OpticsCALCULATIONSControllabilityDISCRETE EXTERIOR CALCULUSAstrophysics::Earth and Planetary AstrophysicsMAGNETOPLASMADiscretizationRADAR REFLECTIONTIME DOMAIN ANALYSISVOLUME INTEGRAL EQUATIONdiscrete exterior calculusELECTROMAGNETIC SCATTERINGOpticsFINITE DIFFERENCE TIME DOMAIN METHOD0103 physical sciencesSCATTERINGTime domainmeteorsNUMERICAL METHODS0105 earth and related environmental sciencesta113ta114Computer simulationbusiness.industryta111Finite-difference time-domain methodRADARDiscrete exterior calculuselectromagnetic scatteringradar reflectionsELECTROMAGNETIC METHODmeteoritbusinessJournal of Quantitative Spectroscopy and Radiative Transfer
researchProduct

2018

The Radar Vegetation Index (RVI) is a well-established microwave metric of vegetation cover. The index utilizes measured linear scattering intensities from co- and cross-polarization and is normalized to ideally range from 0 to 1, increasing with vegetation cover. At long wavelengths (L-band) microwave scattering does not only contain information coming from vegetation scattering, but also from soil scattering (moisture & roughness) and therefore the standard formulation of RVI needs to be revised. Using global level SMAP L-band radar data, we illustrate that RVI runs up to 1.2, due to the pre-factor in the standard formulation not being adjusted to the scattering mechanisms at these lo…

010504 meteorology & atmospheric sciencesMoistureScattering0211 other engineering and technologiesPolarimetry02 engineering and technology15. Life on land01 natural scienceslaw.inventionlawSurface roughnessmedicineGeneral Earth and Planetary SciencesLeaf area indexRadarmedicine.symptomVegetation (pathology)Water content021101 geological & geomatics engineering0105 earth and related environmental sciencesRemote sensingRemote Sensing
researchProduct

Ray optics for absorbing particles with application to ice crystals at near-infrared wavelengths

2018

Abstract Light scattering by particles large compared to the wavelength of incident light is traditionally solved using ray optics which considers absorption inside the particle approximately, along the ray paths. To study the effects rising from this simplification, we have updated the ray-optics code SIRIS to take into account the propagation of light as inhomogeneous plane waves inside an absorbing particle. We investigate the impact of this correction on traditional ray-optics computations in the example case of light scattering by ice crystals through the extended near-infrared (NIR) wavelength regime. In this spectral range, ice changes from nearly transparent to opaque, and therefore…

010504 meteorology & atmospheric sciencesOpacityspektroskopiaIce crystalsPhysics::OpticsRay optics01 natural sciencesPOLARIZED-LIGHT SCATTERING114 Physical sciencesLight scattering010309 opticsScatteringMEDIAOptics0103 physical sciencesABSORPTIONInhomogeneous wavesCIRRUSray opticsSpectroscopy0105 earth and related environmental sciencesPhysicsta113absorbing mediaRadiationta115Geometrical opticsIce crystalsta114Scatteringbusiness.industryscatteringCLOUDSkiteetRayAtomic and Molecular Physics and OpticsoptiikkaSOLAR-RADIATIONWavelengthMAXWELLS EQUATIONSAbsorbing mediainhomogeneous wavesLight scattering by particlesPHASE MATRIXGEOMETRIC-OPTICSbusinessice crystalsAPPROXIMATION
researchProduct

PHYSICS-based retrieval of scattering albedo and vegetation optical depth using multi-sensor data integration

2017

Vegetation optical depth and scattering albedo are crucial parameters within the widely used τ-ω model for passive microwave remote sensing of vegetation and soil. A multi-sensor data integration approach using ICESat lidar vegetation heights and SMAP radar as well as radiometer data enables a direct retrieval of the two parameters on a physics-derived basis. The crucial step within the retrieval methodology is the calculus of the vegetation scattering coefficient KS, where one exact and three approximated solutions are provided. It is shown that, when using the assumption of a randomly oriented volume, the backscatter measurements of the radar provide a sufficient first order estimate and …

010504 meteorology & atmospheric sciencesScattering albedo0208 environmental biotechnologyradiometry02 engineering and technologyretrieval methodologycomputer.software_genre01 natural scienceslaw.inventionlawremote sensing by radarRadaractive-passive microwavesPhysics::Atmospheric and Oceanic PhysicsIndexespassive microwave remote sensingRemote sensingremote sensing by laser beamGeographyLidaroptical radarcrucial parametersmedicine.symptomvegetation scattering coefficientData integrationBackscattervegetation mappingta1171τ-ω modelsoilPhysics::GeophysicsICESat lidar vegetation heightsvegetationmedicineVegetation optical depthbackscatter0105 earth and related environmental sciencesRemote sensingsensor fusionRadiometerScatteringnovel multisensor approachSMAPAlbedoMulti-sensor020801 environmental engineeringradiometer dataVegetation (pathology)multisensor data integration approachcomputerICESatalbedo
researchProduct

SMOS-IC : a revised SMOS product based on a new effective scattering albedo and soil roughness parameterization

2017

International audience; This study presents a new SMOS (Soil Moisture and Ocean Salinity) soil moisture (SM) product based on a different scattering albedo and soil roughness parameterization: the SMOS-IC (SMOS INRA-CESBIO) data set. In this study, several parameterizations of the vegetation and soil roughness parameters (co, H-R and N-RP, P = H, V) were tested and the retrieved SM was compared against in situ observations obtained from the International Soil Moisture Network (ISMN). Firstly, values of omega = 0.10, H-R = 0.4 and N-RP = -1 (P = H, V) were found globally. Secondly, a calibration of these parameters was obtained for the different land cover categories of the International Geo…

010504 meteorology & atmospheric sciencesScattering[SDV]Life Sciences [q-bio]0211 other engineering and technologies02 engineering and technologyLand coverVegetation15. Life on landAlbedoAtmospheric sciences01 natural sciences13. Climate actionProduct (mathematics)[SDE]Environmental SciencesCalibrationEnvironmental scienceWater contentSoil roughness021101 geological & geomatics engineering0105 earth and related environmental sciences
researchProduct

High‐resolution stimulated Raman spectroscopy and analysis of line positions and assignments for the ν 2 and ν 3 bands of 13 C 2 H 4

2016

High-resolution stimulated Raman spectra of13C2H4 in the regions of the ν2 and ν3 Raman active modes have been recorded at two temperatures (145 and 296 K) based on the quasi continuous-wave (cw) stimulated Raman spectrometer at Instituto de Estructura de la Materia IEM-CSIC in Madrid. A tensorial formalism adapted to X2Y4 planar asymmetric tops with D2h symmetry (developed in Dijon) and a program suite called D2hTDS (now part of the XTDS/SPVIEW spectroscopic software) were proposed to analyze and calculate the high-resolution spectra. A total of 103 and 51 lines corresponding to ν2 and ν3 Raman active modes have been assigned and fitted in wavenumber with a global root mean square deviatio…

010504 meteorology & atmospheric sciencesSpectrometerChemistryAnalytical chemistry02 engineering and technology021001 nanoscience & nanotechnology01 natural sciencesSpectral linesymbols.namesakePlanarsymbolsWavenumberGeneral Materials ScienceAtomic physics0210 nano-technologySpectroscopyRaman spectroscopyRoot-mean-square deviationSpectroscopyRaman scattering0105 earth and related environmental sciencesJournal of Raman Spectroscopy
researchProduct

How much is enough? : The convergence of finite sample scattering properties to those of infinite media

2021

We study the scattering properties of a cloud of particles. The particles are spherical, close to the incident wavelength in size, have a high albedo, and are randomly packed to 20% volume density. We show, using both numerically exact methods for solving the Maxwell equations and radiative-transfer-approximation methods, that the scattering properties of the cloud converge after about ten million particles in the system. After that, the backward-scattered properties of the system should estimate the properties of a macroscopic, practically infinite system. (C) 2021 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.o…

010504 meteorology & atmospheric scienceseducationparticulate random mediapienhiukkasetoptiset ominaisuudet01 natural sciences114 Physical sciencesVolume densityScatteringsymbols.namesakelaskennallinen tiedeConvergence (routing)Radiative transferRadiative transferMaxwellin yhtälötsirontaSpectroscopy0105 earth and related environmental sciencesPhysicsRadiationScatteringscatteringAlbedoSample (graphics)Atomic and Molecular Physics and OpticsComputational physicsWavelengthMaxwell's equationsMaxwell equationsradiative transferParticulate random mediasymbolsapproksimointi
researchProduct

Analysis of the radar vegetation index and assessment of potential for improvement

2018

The Radar Vegetation Index (RVI) is widely applied to indicate vegetation cover. The index includes the backscattering intensities of co- and cross-polarization that do not only contain information coming from vegetation scattering at longer wavelength (L-band), but also from the soil underneath. A forward modelling approach using active and passive microwave-derived parameters to obtain the scattering contribution of the soil is pursued. The idea of this research study is a subtraction of the attenuated soil scattering contribution from the measured backscattering intensities, to provide a clean vegetation-based solution, called improved RVI (RVII). For latter analysis, the vegetation volu…

010504 meteorology & atmospheric sciencesmicrowave[SDV]Life Sciences [q-bio]0211 other engineering and technologiesSoil science02 engineering and technology01 natural scienceslaw.inventionVegetation coverlawmedicineRange (statistics)RadarComputingMilieux_MISCELLANEOUS021101 geological & geomatics engineering0105 earth and related environmental sciencesRadarVegetationScatteringSMAP15. Life on landWavelength[SDE]Environmental SciencesVegetation water contentEnvironmental scienceactive-passive sensingmedicine.symptomVegetation IndexVegetation (pathology)Cartography
researchProduct