Search results for "SIGNAL"

showing 10 items of 6924 documents

Enhanced acoustic pressure sensors based on coherent perfect absorber-laser effect

2021

Lasing is a well-established field in optics with several applications. Yet, having lasing or huge amplification in other wave systems remains an elusive goal. Here, we utilize the concept of coherent perfect absorber-laser to realize an acoustic analog of laser with a proven amplification of more than 10 4 in terms of the scattered acoustic signal at a frequency of a few kHz. The obtained acoustic laser (or the coherent perfect absorber-laser) is shown to possess extremely high sensitivity and figure of merit with regard to ultra-small variations of the pressure (density and compressibility) and suggests its evident potential to build future acoustic pressure devices such as precise sensor…

010302 applied physicsPhysics[SPI.ACOU] Engineering Sciences [physics]/Acoustics [physics.class-ph]business.industry[SPI.NANO] Engineering Sciences [physics]/Micro and nanotechnologies/MicroelectronicsPhysics::OpticsGeneral Physics and AstronomyCoherent perfect absorber02 engineering and technology[SPI.MAT] Engineering Sciences [physics]/Materials021001 nanoscience & nanotechnologyLaser01 natural sciencesSignallaw.inventionOpticslaw0103 physical sciencesCompressibilityFigure of merit0210 nano-technologySound pressurebusinessLasing thresholdSensitivity (electronics)
researchProduct

Investigation on partial discharges in HVDC cables after polarity reversal events

2020

Due to the accumulation of space charge inside the insulating layer of HVDC cables, the electric field under load conditions may be altered compared to what is established in HVAC cables. For example, a high thermal gradient leads to the inversion of the electric field pattern until the maximum value is reached in proximity of the dielectric-semicon interfaces. These maximum values can be further increased due to transient overvoltages and polarity reversal events until reaching electric field values higher than the rated ones. The main goal of this research is to investigate the possibility that, during these transient phenomena, conditions are created that favor the occurrence of partial …

010302 applied physicsPolarity reversalMaterials science0211 other engineering and technologies02 engineering and technologyMechanics01 natural sciencesSpace chargeHVDC cable Polarity reversal HVDC joint Space chargeTemperature gradientSettore ING-IND/31 - ElettrotecnicaElectric field0103 physical sciencesPartial dischargeThermal021108 energyTransient (oscillation)Energy (signal processing)
researchProduct

A graphene-based neutral particle detector

2019

A neutral particle detector is presented, in which the traditionally used target material, indium tin oxide (ITO), is replaced by graphene. The graphene-based detector enables collinear photodetachment measurements at a significantly shorter wavelength of light down to 230 nm compared to ITO-based detectors, which are limited at 335 nm. Moreover, the background signal from the photoelectric effect is drastically reduced when using graphene. The graphene based detector, reaching 1.7 eV further into the UV energy range, allows increased possibilities for photodetachment studies of negatively charged atoms, molecules, and clusters.A neutral particle detector is presented, in which the traditio…

010302 applied physicsRange (particle radiation)Materials sciencePhysics and Astronomy (miscellaneous)business.industryGrapheneDetector02 engineering and technologyPhotoelectric effect021001 nanoscience & nanotechnology01 natural sciencesSignallaw.inventionIndium tin oxideWavelengthlaw0103 physical sciencesOptoelectronics0210 nano-technologybusinessNeutral particleApplied Physics Letters
researchProduct

Silicon dosimeters based on Floating Gate Sensor: design, implementation and characterization

2020

A rad-hard monolithic dosimeter has been implemented and characterized in a standard 180 nm CMOS technology. The radiation sensor (C-sensor) is based on a Floating Gate (FG) MOS discharge principle. The output current is processed by a current-to-voltage (I/V) interface and then converted by a 5-bit flash ADC. The dosimeter is re-usable (FG can be recharged) and can detect a dose up to 1krad (Si) with a resolution of 30rad (Si) typical over temperature 0 to 85°C range. The ADC allows easy further signal processing for calibration and averaging, etc. The power consumption of C-sensor plus I/V interface is < 2mW from a 5 V power supply. The overall layout area is less than 0.25mm2. The Rad…

010302 applied physicsSignal processingMaterials scienceDosimeterSettore ING-IND/20 - Misure E Strumentazione Nucleari010308 nuclear & particles physicsbusiness.industryAnalog-to-digital converterHardware_PERFORMANCEANDRELIABILITYFlash ADC01 natural sciencesPower (physics)law.inventionCMOSlawAnalog-to-Digital converter current-to-voltage interfaces Dosimeter edgeless transistors (ELT) Floating Gate MOS radiation hardening by design (RHBD) total ionizing dose (TID)Absorbed dose0103 physical sciencesHardware_INTEGRATEDCIRCUITSCalibrationOptoelectronicsbusiness2020 IEEE 20th Mediterranean Electrotechnical Conference ( MELECON)
researchProduct

Data-driven Fault Diagnosis of Induction Motors Using a Stacked Autoencoder Network

2019

Current signatures from an induction motor are normally used to detect anomalies in the condition of the motor based on signal processing techniques. However, false alarms might occur if using signal processing analysis alone since missing frequencies associated with faults in spectral analyses does not guarantee that a motor is fully healthy. To enhance fault diagnosis performance, this paper proposes a machinelearning based method using in-built motor currents to detect common faults in induction motors, namely inter-turn stator winding-, bearing- and broken rotor bar faults. This approach utilizes single-phase current data, being pre-processed using Welch’s method for spectral density es…

010302 applied physicsSignal processingbusiness.industryRotor (electric)Computer science020208 electrical & electronic engineeringSpectral density estimationPattern recognition02 engineering and technologyFault (power engineering)01 natural sciencesAutoencoderlaw.inventionSupport vector machineStatistical classificationlaw0103 physical sciences0202 electrical engineering electronic engineering information engineeringArtificial intelligencebusinessInduction motor2019 22nd International Conference on Electrical Machines and Systems (ICEMS)
researchProduct

Oxy-nitrides characterization with a new ERD-TOF system

2017

Abstract A new time-of-flight (TOF) camera was installed on Elastic Recoil Detection (ERD) measurement setup on the Tandem Accelerator at Universite de Montreal. The camera consists of two timing detectors, developed and built by the Jyvaskyla group, that use a thin carbon foil and microchannel plates (MCP) to produce the start and stop signals. The position of the first detector is fixed at 18 cm from the target, while the position of the second detector can be varied between 50 and 90 cm from the first detector. This allows to increase time resolution by increasing the distance between the time-of-flight detectors or to increase solid angle by decreasing the distance. Moving the detector …

010302 applied physicsToF-ERDANuclear and High Energy PhysicsIon beam analysisMicrochannelMaterials scienceta114Physics::Instrumentation and Detectorsbusiness.industryDetectorSolid angleion beam analysis02 engineering and technology021001 nanoscience & nanotechnology01 natural sciencesSignalelastic recoil detectionElastic recoil detectionOpticsPosition (vector)0103 physical sciences0210 nano-technologybusinessInstrumentationEnergy (signal processing)Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms
researchProduct

Simulations of the effect of the contact energy levels on a simple model of a hot carrier cell

2016

In the present work, the performance of a simplified model of a hot carrier cell is examined at different energy levels of carrier collection. Incident photons, Monte Carlo generated by employing the ASTM G173-03 data set, are accounted for individually as they interact with the cell. It is assumed that the carriers can be collected ultra-fast, thus avoiding considering hot carrier thermalisation effects. Although the model is preliminary and lacking some mechanisms of hot carrier cells, it has been demonstrated that the present approach to modelling hot carrier solar cells can be developed into fully working models. Some effects of the absorption energy levels in the valence band have been…

010302 applied physicsWork (thermodynamics)SIMPLE (dark matter experiment)PhotonMaterials sciencebusiness.industryMonte Carlo methodElectrical engineering02 engineering and technology021001 nanoscience & nanotechnology01 natural sciencesComputational physicsThermalisationEnergy absorbing0103 physical sciencesValence band0210 nano-technologybusinessEnergy (signal processing)2016 IEEE 43rd Photovoltaic Specialists Conference (PVSC)
researchProduct

Composition dependence ofSi1−xGexsputter yield

2005

Sputtering yields have been measured for unstrained ${\mathrm{Si}}_{1\ensuremath{-}x}{\mathrm{Ge}}_{x}$ $(x=0--1)$ alloys when bombarded with ${\mathrm{Ar}}^{+}$ ions within the linear cascade regime. Nonlinear S-shape dependence of the sputter yield as a function of the alloy composition has been revealed. The dependence is analyzed within the frameworks of the cascade theory conventionally accepted to be the most systematic to date theoretical approach in sputtering. In view of a linear composition dependence predicted for the sputter yield by the cascade theory adapted for polyatomic substrates, the nonlinearity observed in our experiments is shown to be related to the alloying effect on…

010302 applied physicsYield (engineering)Materials scienceDegree (graph theory)Polyatomic ionBinding energy02 engineering and technology021001 nanoscience & nanotechnologyCondensed Matter Physics01 natural sciencesSurface energyElectronic Optical and Magnetic MaterialsCondensed Matter::Materials ScienceSputtering0103 physical sciencesAtomAtomic physics0210 nano-technologyEnergy (signal processing)Physical Review B
researchProduct

Real-time signal processing in embedded systems

2016

International audience

010302 applied physics[ INFO ] Computer Science [cs]business.industryComputer science020206 networking & telecommunications02 engineering and technologycomputer.software_genre01 natural sciencesSignalHardware and Architecture0103 physical sciences0202 electrical engineering electronic engineering information engineeringReal time signal processing[INFO]Computer Science [cs]businessAudio signal processingcomputerSoftwareDigital signal processingComputer hardwareComputingMilieux_MISCELLANEOUS
researchProduct

Data Reweighting in Metadynamics Simulations.

2020

The data collected along a metadynamics simulation can be used to recover information about the underlying unbiased system by means of a reweighting procedure. Here, we analyze the behavior of several reweighting techniques in terms of the quality of the reconstruction of the underlying unbiased free energy landscape in the early stages of the simulation and propose a simple reweighting scheme that we relate to the other techniques. We then show that the free energy landscape reconstructed from reweighted data can be more accurate than the negative bias potential depending on the reweighting technique, the stage of the simulation, and the adoption of well-tempered or standard metadynamics. …

010304 chemical physicsComputer science0103 physical sciencesMetadynamicsEnergy landscapePhysical and Theoretical ChemistryNegative bias01 natural sciencesAlgorithmEnergy (signal processing)Computer Science ApplicationsJournal of chemical theory and computation
researchProduct