Search results for "SILICON"

showing 10 items of 1391 documents

An Analysis of the Broadening Induced by Beam Damage in Transmission Electron Diffraction Spots from an Oriented Aliphatic Monolayer

1991

We have analysed the progressive changes in diffraction spot shape during prolonged transmission electron diffraction observation of a soap monolayer supported on a thin polymer film. The material used to form the monolayer was cadmium eicosanoate (arachidate). The observed changes cannot be explained at all in terms of the chemical crosslinking which is known to occur as a result of beam damage, nor completely in terms of the strain fields caused by unbound dislocation defects of the crystalline lattice. The most plausible explanation involves the formation of linear dislocation aggregates which resemble grain boundaries but yet which are not linked into a continuous network. The evolution…

Diffractionchemistry.chemical_compoundCrystallographyElectron diffractionChemistryMonolayerGrain boundaryCrystal structureDislocationSilicon monoxideMolecular physicsBeam (structure)
researchProduct

Mixed-type circuits with distributed and lumped parameters as correct models for integrated structures

1991

The technology of integrated circuits imposes upon their designers the need to deal with structures with distributed parameters. Figure 4.1 shows a schematic diagram of part of a digital integrated chip, consisting of an n MOS transistor with gate (G), drain (D) and source (S) as terminals, and its thin-film connection with the rest of the chip. This on-chip connection can be made by metals (Al, W), polycristaline silicon (polysilicon) or metal suicides (WSi 2 ). Alternative materials to oxide-passivated silicon substrates are saphire and gallium arsenide (Saraswat and Mohammadi [1982], Yuan et al. [1982], Passlack et al. [1990]).

Digital electronicsMaterials scienceSiliconbusiness.industryTransistorElectrical engineeringchemistry.chemical_elementSchematicIntegrated circuitChiplaw.inventionGallium arsenidechemistry.chemical_compoundchemistrylawbusinessElectronic circuit
researchProduct

Synthesis of Liquid-Crystalline Colloids in Nonpolar Media and their Manipulation in Electric Fields

2009

The first synthesis of anisotropic liquid-crystalline colloids in silicone oil by a direct (radical) polymerization of a monomer in THF/silicone oil mixtures with the help of siloxane containing stabilizers is described. The size of the colloids is in the lower μm range and can be adjusted by varying the mixture. The resulting colloids show a bipolar director configuration if they are small (<1.5 μm) and a radial configuration if they are larger. The colloids are sterically stabilized, and, due to the nonpolarity of the solvent, the disturbing effects of migrating ions are excluded and experiments in the electric field can be conducted. Both line formation in DC fields and a periodic switch…

Dispersion polymerizationendocrine systemPolymers and PlasticsChemistrydigestive oral and skin physiologyOrganic ChemistryRadical polymerizationCondensed Matter Physicscomplex mixturesSilicone oilColloidchemistry.chemical_compoundPolymerizationSiloxaneElectric fieldPolymer chemistryMaterials ChemistryParticle sizePhysical and Theoretical ChemistryMacromolecular Chemistry and Physics
researchProduct

Synthesis and Spectroscopic Properties of Silica−Dye−Semiconductor Nanocrystal Hybrid Particles

2010

We prepared silica-dye-nanocrystal hybrid particles and studied the energy transfer from semiconductor nanocrystals (= donor) to organic dye molecules (= acceptor). Multishell CdSe/CdS/ZnS semiconductor nanocrystals were adsorbed onto monodisperse Stöber silica particles with an outer silica shell of thickness 2-23 nm containing organic dye molecules (Texas Red). The thickness of this dye layer has a strong effect on the energy transfer efficiency, which is explained by the increase in the number of dye molecules homogeneously distributed within the silica shell, in combination with an enhanced surface adsorption of nanocrystals with increasing dye amount. Our conclusions were underlined by…

DispersityTexas RedBinary compoundNanotechnologychemistry.chemical_compoundAdsorptionMicroscopy Electron TransmissionQuantum DotsFluorescence Resonance Energy TransferElectrochemistryNanotechnologyMoleculeGeneral Materials ScienceColoring AgentsSpectroscopySurfaces and InterfacesSilicon DioxideCondensed Matter PhysicsAcceptorModels ChemicalSemiconductorsXantheneschemistryChemical engineeringNanocrystalSpectrophotometryNanoparticlesParticleSpectrophotometry UltravioletAdsorptionMonte Carlo MethodLangmuir
researchProduct

Studies of monolayer/substrate adhesion as function of the monolayer headgroup charge: DMPE and DMPA

1991

The variation of the work of adhesion between lipid monolayers and a plane silicon oxide surface in a typical LB-configuration is measured as function of the subphase pH. The adhesion energy is deduced via fluorescence microscopy from the equilibrium meniscus height. With increasing pH the negative headgroup charge of both, dimyristoylphosphatidylethanolamine (DMPE) and dimyristoylphosphatidic acid (DMPA) monolayers increases. The increasing charge of DMPE is reflected in a measured decrease of the work of adhesion at higher pH. The DMPA/SiO2 interaction is not affected by increasing headgroup charges. These results are qualitatively understood in terms of an electrostatic double layer inte…

Double layer (biology)Polymers and PlasticsChemistryStereochemistryOrganic ChemistryCharge (physics)AdhesionSubstrate (electronics)Condensed Matter PhysicsCrystallographyMonolayerMaterials ChemistryMeniscusSurface chargeSilicon oxideMakromolekulare Chemie. Macromolecular Symposia
researchProduct

Mesoporous inorganic nanoscale particles for drug adsorption and controlled release.

2018

The review provides an overview of the mesoporous inorganic particles employed as drug delivery systems for controlled and sustained release of drugs. We have classified promising nanomaterials for drug delivery on the basis of their natural or synthetic origin. Nanoclays are available in different morphologies (nanotubes, nanoplates and nanofibers) and they are typically available at low cost from natural resources. The surface chemistry of nanoclays is versatile for targeted modifications to control loading and release properties. Synthetic nanomaterials (imogolite, laponite and mesoporous silica) present the advantages of well-established purity and availability with size features that …

Drug CarriersMaterials sciencePharmaceutical ScienceNanoparticleImogoliteNanotechnology02 engineering and technologyMesoporous silica010402 general chemistry021001 nanoscience & nanotechnologySilicon Dioxide01 natural sciencesControlled release0104 chemical sciencesNanomaterialsNanofiberDelayed-Action PreparationsDrug deliveryClayHumansNanoparticlesAdsorption0210 nano-technologyMesoporous materialPorosityTherapeutic delivery
researchProduct

Efficacy of budesonide-loaded mesoporous silica microparticles capped with a bulky azo derivative in rats with TNBS-induced colitis.

2019

Abstract A colon targeted drug delivery system for inflammatory bowel diseases (IBD), consisting in budesonide loaded mesoporous silica microparticles functionalized with a selective azo-molecular gate (M-Bud), has been evaluated for in vivo efficacy. Experimental colitis in male Wistar rats was induced by rectal instillation of 2,4,6-trinitrobenzenesulfonic acid (TNBS). M-Bud was orally administered to the rats as a suspension in water. Colon/body weight ratio, clinical activity score, and histological evaluation were used as inflammatory indices to measure the performance of the microparticles. The formulation was compared with a suspension prepared from the commercial drug Entocord®. Sta…

DrugBudesonideMalemedia_common.quotation_subjectPharmaceutical Science02 engineering and technologyPharmacology030226 pharmacology & pharmacy03 medical and health sciences0302 clinical medicineDrug Delivery SystemsIn vivomedicineAnimalsColitisBudesonideTnbs colitismedia_commonChemistryMesoporous silica021001 nanoscience & nanotechnologymedicine.diseaseColitisSilicon DioxideControlled releasedigestive system diseasesRatsTargeted drug deliveryTrinitrobenzenesulfonic Acid0210 nano-technologyAzo Compoundsmedicine.drugInternational journal of pharmaceutics
researchProduct

Inkjet printing methodologies for drug screening

2010

We show for the first time a contactless, low-cost, and rapid drug screening methodology by employing inkjet printing for molecular dispensing in a microarray format. Picoliter drops containing a model substrate (D-glucose)/ inhibitor (D-glucal) couple were accurately dispensed on a single layer consisting of the enzymatic target (glucose oxidase) covalently linked to a functionalized silicon oxide support. A simple colorimetric detection method allowed one to prove the screening capability of the microarray with the possibility to assay with high reproducibility at the single spot level. Measurements of the optical signal as a function of concentration and of time verified the occurrence a…

DrugReproducibilitybiologyInkwellStereochemistryChemistrymedia_common.quotation_subjectDrug Evaluation PreclinicalNanotechnologySubstrate (printing)Microarray AnalysisSilicon DioxideAnalytical ChemistryGlucose OxidaseSensor arraybiology.proteinColorimetryInkGlucose oxidasedrug screening inkjet printing microarrays biological surfacesEnzyme InhibitorsColorimetryInkjet printingmedia_commonSettore CHIM/02 - Chimica Fisica
researchProduct

High resolution 80Se(n,γ) cross section measurement at CERN n_TOF and development of the novel i-TED detection system

2022

El proceso (-s) de captura lenta de neutrones es responsable de la formación de la mitad de los elementos más pesados ​​que el hierro en el universo. A pesar de la larga escala de tiempo de este proceso, la larga vida media de algunos isótopos inestables a lo largo del flujo de reacción del proceso-s crea puntos de ramificación que conducen a una división de la ruta de la nucleosíntesis. 79Se (t1/2 = 3.27 x 10^5 y) representa uno de los núcleos ramificados-s más relevantes y debatidos por dos razones principales. Por un lado, la existencia de estados excitados de baja energía en el 79Se, cuya población puede variar con la temperatura del medio estelar, hace que el patrón de abundancia local…

Dynamic Electronic Collimationbranching pointPETsys Electronicsnucleosynthesisi-TEDprompt-gammaUNESCO::FÍSICA::Física atómica y nuclear ::Física nuclear experimental bajas energíasneutron capture cross sectionnuclear physics79Se:FÍSICA::Física atómica y nuclear ::Física nuclear experimental bajas energías [UNESCO]time of flightmonolithic scintillation crystalMACStotal energy detectorsbackground rejectionsilicon photomultipliers-processCompton camera80Se
researchProduct

Monte Carlo simulation of high‐order harmonics generation in bulk semiconductors and submicron structures

2004

To qualify the feasibility of standard semiconductor materials and Schottky‐barrier diodes (SBDs) for THz high‐order harmonic generation and extraction, the harmonic intensity, intrinsic noise and signal‐to‐noise ratio are calculated by the Monte Carlo method when a periodic high‐frequency large‐amplitude external signal is applied to a semiconductor device. Due to very high signal‐to‐noise ratio heavily doped GaAs SBDs are found to exhibit conditions for frequency mixing and harmonic extraction that are definitively superior to those of bulk materials. (© 2004 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)

EFFICIENCYDEVICESMaterials scienceINPMonte Carlo methodAnalytical chemistry02 engineering and technologySCHOTTKY-BARRIER DIODES01 natural sciencesNoise (electronics)NOISECondensed Matter::Materials Science0103 physical sciencesHigh harmonic generationTHZSILICONELECTRON-TRANSPORTDiode010302 applied physicsbusiness.industryGAASDopingSemiconductor device021001 nanoscience & nanotechnology[SPI.TRON]Engineering Sciences [physics]/ElectronicsHarmonicsHarmonicRADIATIONOptoelectronics0210 nano-technologybusinessphysica status solidi (c)
researchProduct