Search results for "SPIN STATES"
showing 10 items of 253 documents
First-order and tricritical wetting transitions in the two-dimensional Ising model caused by interfacial pinning at a defect line
2014
We present a study of the critical behavior of the Blume-Capel model with three spin states (S=±1,0) confined between parallel walls separated by a distance L where competitive surface magnetic fields act. By properly choosing the crystal field (D), which regulates the density of nonmagnetic species (S=0), such that those impurities are excluded from the bulk (where D=) except in the middle of the sample [where DM(L/2)≠], we are able to control the presence of a defect line in the middle of the sample and study its influence on the interface between domains of different spin orientations. So essentially we study an Ising model with a defect line but, unlike previous work where defect lines …
Determining Key Local Vibrations in the Relaxation of Molecular Spin Qubits and Single-Molecule Magnets.
2017
To design molecular spin qubits and nanomagnets operating at high temperatures, there is an urgent need to understand the relationship between vibrations and spin relaxation processes. Herein we develop a simple first-principles methodology to determine the modulation that vibrations exert on spin energy levels. This methodology is applied to [Cu(mnt)2]2– (mnt2– = 1,2-dicyanoethylene-1,2-dithiolate), a highly coherent complex. By theoretically identifying the most relevant vibrational modes, we are able to offer general strategies to chemically design more resilient magnetic molecules, where the energy of the spin states is not coupled to vibrations.
Competing Phases Involving Spin-State and Ligand Structural Orderings in a Multistable Two-Dimensional Spin Crossover Coordination Polymer
2017
[EN] Competition between spin-crossover and structural ligand ordering is identified as responsible for multistability and generation of six different phases in a rigid two-dimensional coordination polymer formulated {Fe-II[Hg-II(SCN)(3)](2) mu-(4,4'-bipy)(2)}(n) (1) (4,4'-bipy = 4,4'-bipyridine). The structure of 1 consists of infinite linear [Fe(mu-4,4'-bipy)](n)(2n+) chains linked by in situ formed {[Hg-II(SCN)(3)](2)(mu-4,4'-bipy)}(2n-) anionic dimers. The thermal dependence of the high-spin fraction, his, features four magnetic phases defined by steps following the sequence gamma(HS) = 1 (phase 1) gamma(HS) = 1/2 (phase 2) gamma(HS) approximate to 1/3 (phase 3) gamma(HS) = 0 (phase 4) …
Thermal and pressure-induced spin crossover in a novel three-dimensional Hoffman-like clathrate complex
2011
The synthesis and crystal structure of the interpenetrated metal–organic framework material Fe(bpac)2[Ag(CN)2]2 (bpac = 4,4′-bis(pyridyl)acetylene) are reported along with the characterization of its spin crossover properties by variable temperature magnetometry and Mossbauer spectroscopy. The complex presents an incomplete stepped spin transition as a function of temperature that is modified upon successive thermal cycling. The pressure-induced transition has also been investigated by means of high pressure Raman spectroscopy using a diamond anvil cell. The results show that it is possible to reach the thermally-inaccessible fully low spin state at room temperature by applying hydrostatic …
Correlations of the distribution of spin states in spin crossover compounds
1999
Abstract Short range correlations of the distribution of high spin (HS) and low spin (LS) states show up in thermal spin transition curves, decay curves of the light induced metastable HS state (LIESST state), and in structural features during the spin transitions. Correlations are due to short range interactions between the spin crossover molecules. Short range interactions may compete with omnipresent long range interactions and give rise to interesting spin transition phenomena. In this paper, the effect of correlations on the thermal spin transition in the mixed crystal system [Fe x Zn 1− x (pic) 3 ]Cl 2 ·EtOH (pic=picolylamine) is discussed. In particular the step in the thermal transi…
Pressure-Induced High Spin State in [Fe(btr)2(NCS)2]·H2O (btr = 4,4′-bis-1,2,4-triazole)
2000
Application of hydrostatic pressure (≤ 10.5 kbar) on the two-dimensional spin transition compound [Fe(btr)2(NCS)2]·H2O (btr = 4,4‘-bis-1,2,4-triazole) results in an unexpected stabilization of the HS state. On release of the pressure, the HS state is found to be partially trapped. After thermal relaxation of the metastable HS state obtained by the LIESST effect (light-induced excited spin state trapping), a pure LS state is obtained in contrast to the pressure experiments. This different behavior supports a structural phase transition as the likely basis of the pressure-induced HS state.
Theoretical Evaluation of [V IV (α-C 3 S 5 ) 3 ] 2– as Nuclear-Spin-Sensitive Single-Molecule Spin Transistor
2017
In a straightforward application of molecular nanospintronics to quantum computing, single-molecule spin transistors can be used to measure nuclear spin qubits. Conductance jumps accompany electronic spin flips at the so-called anticrossings between energy levels, which take place only at specific magnetic fields determined by the nuclear spin state. To date, the only molecular hardware employed for this technique has been the terbium(III) bis(phthalocyaninato) complex. Here we explore theoretically whether a similar behavior is expected for a highly stable molecular spin qubit, the vanadium tris-dithiolate complex [VIV(α-C3S5)3]2–. We consider such a molecule between two gold electrodes an…
Atomic, electronic and thermodynamic properties of cubic and orthorhombic LaMnO3 surfaces
2009
We studied in detail the atomic and electronic structure of the LaMnO3 surfaces, in both cubic and orthorhombic phases, combining GGA-plane wave approach, as implemented into the VASP-4.6.19 computer code, with a slab model. These studies are complemented by a thermodynamic analysis of the surface stability at different gas pressures and temperatures. The obtained results are compared with similar studies for other ABO3-perovskites. 2008 Elsevier B.V. All rights reserved. The ABO3-type perovskite manganites and cobaltates (A = La, Sr, Ca; B = Mn, Co) are important functional materials with numerous high-tech applications [1]. Some of them require understanding and control surface properties…
Thermal and light induced polymorphism in iron(II) spin crossover compounds.
2004
The spin crossover complexes {Fe[H2B(pz)2]2L} ([H2B(pz)2]2 = dihydrobis(pyrazolyl)borate, L = 2,2'-bipyridine (1), bipy and 1,10-phenanthroline, phen (2)) undergo both thermal and light induced spin crossover, but the structure of the low spin and light induced high spin states for 2 are different from that of the thermally induced high spin state and from those of 1. Real Cabezos, Jose Antonio, Jose.A.Real@uv.es
Thermal- and photoinduced spin-state switching in an unprecedented three-dimensional bimetallic coordination polymer.
2005
The compound {Fe(pmd)[Ag(CN)2][Ag2(CN)3]} (pmd=pyrimidine) was synthesized and characterized. Magnetic, calorimetric and single crystal visible spectroscopic studies demonstrate the occurrence of a two-step high-spin (HS) right arrow over left arrow low-spin (LS) transition. The critical temperatures are T(c1)=185 and T(c2)=148 K. Each step involves approximately 50 % of the iron centers, with the low-temperature step showing a hysteresis of 2.5 K. The enthalpy and entropy variations associated with the two steps are DeltaH(1)=3.6+/-0.4 kJ mol(-1) and DeltaS(1)=19.5+/-3 J K(-1) mol(-1); DeltaH(2)=4.8+/-0.4 kJ mol(-1) and DeltaS(2)=33.5+/-3 J K(-1) mol(-1). Photomagnetic and visible spectros…