Search results for "SPIN STATES"

showing 10 items of 253 documents

Spin state of a single-molecule magnet (SMM) creating long-range ordering on ferromagnetic layers of a magnetic tunnel junction – a Monte Carlo study

2021

Paramagnetic single-molecule magnets (SMMs) interacting with the ferromagnetic electrodes of a magnetic tunnel junction (MTJ) produce a new system. The properties and future scope of new systems differ dramatically from the properties of isolated molecules and ferromagnets. However, it is unknown how far deep in the ferromagnetic electrode the impact of the paramagnetic molecule and ferromagnet interactions can travel for various levels of molecular spin states. Our prior experimental studies showed two types of paramagnetic SMMs, the hexanuclear Mn6 and octanuclear Fe–Ni molecular complexes, covalently bonded to ferromagnets produced unprecedented strong antiferromagnetic coupling between …

Materials scienceCondensed matter physicsSpintronicsSpin statesHeisenberg modelGeneral Chemical EngineeringGeneral ChemistryCondensed Matter::Materials ScienceTunnel magnetoresistanceParamagnetismFerromagnetismMagnetCondensed Matter::Strongly Correlated ElectronsSingle-molecule magnetRSC Advances
researchProduct

The Use of Polyoxometalates in the Design of Layer‐Like Hybrid Salts Containing Cationic Mn 4 Single‐Molecule Magnets

2013

Herein, we describe the combination of polyoxometalates (POMs) with a polynuclear metallic cluster Mn4 {Mn4 = [Mn4(OAc)2(pdmH)6]2+, (pdmH = deprotonated pyridine-2,6-dimethanol; C7H8NO2)} for the construction of ionic crystals with layered architectures. Choosing a POM with the appropriate charge and size not only allows for the fine tuning of the stacking periodicity, but it also allows modifying the in-plane packing motif and density of the cationic metallic clusters. The isolation of differently layered hybrid crystals with the same Mn4 single-molecule-magnet (SMM) system allowed for the direct comparison of the magnetic properties of such materials. The variation of the slow relaxation …

Spin statesChemistryInorganic chemistryRelaxation (NMR)StackingCationic polymerizationInorganic ChemistryMetalCrystallographyvisual_artvisual_art.visual_art_mediumCluster (physics)MoleculeHybrid materialEuropean Journal of Inorganic Chemistry
researchProduct

On the Nature of the Plateau in Two-Step Dinuclear Spin-Crossover Complexes

2004

A remarkable feature of the spin-crossover process in several dinuclear iron(II) compounds is a plateau in the two-step transition curve. Up to now, it has not been possible to analyse the spin state of dinuclear pairs that constitute such a plateau, due to the relative high temperatures at which the transition takes place in complexes investigated so far. We solved this problem by experimentally studying a novel dinuclear spin-crossover compound [[Fe(phdia)(NCS)(2)](2)(phdia)] (phdia: 4,7-phenanthroline-5,6-diamine). We report here on the synthesis and characterisation of this system, which exhibits a two-step spin transition at T(c1)=108 K and T(c2)=80 K, displaying 2 K and 7 K wide therm…

QuenchingSpin statesChemistryOrganic ChemistrySpin transitionGeneral ChemistryPlateau (mathematics)CatalysisCrystallographyNuclear magnetic resonanceSpin crossoverMetastabilityMössbauer spectroscopySpin-½
researchProduct

Bidirectional photo-switching of the spin state of iron(II) ions in a triazol based spin crossover complex within the thermal hysteresis loop

2009

Abstract We have investigated the effect of short laser pulses (532 nm, 4 ns, −2 ) on the spin state of iron(II) ions in the spin crossover compound {[Fe II (Htrz) 2 (trz)](BF 4 )} within the hysteresis region of the high-spin (HS) to low-spin (LS) first-order thermal phase transition. Using Raman spectroscopy we have evidenced quasi-complete HS → LS as well as LS → HS photo-conversions, which can be induced by a single laser shot in the descending (351 K) and ascending (378 K) branches of the hysteresis loop, respectively. No effect has been observed, however, close to the center of the hysteresis loop even for repeated exposures.

Phase transitionCondensed matter physicsSpin statesChemistryGeneral Physics and AstronomyLaserMolecular physicslaw.inventionIonLoop (topology)symbols.namesakeHysteresislawSpin crossoversymbolsPhysical and Theoretical ChemistryRaman spectroscopyChemical Physics Letters
researchProduct

Experimental Realization of a Dirac Monopole through the Decay of an Isolated Monopole

2017

We experimentally observe the decay dynamics of deterministically created isolated monopoles in spin-1 Bose-Einstein condensates. As the condensate undergoes a change between magnetic phases, the isolated monopole gradually evolves into a spin configuration hosting a Dirac monopole in its synthetic magnetic field. We characterize in detail the Dirac monopole by measuring the particle densities of the spin states projected along different quantization axes. Importantly, we observe the spontaneous emergence of nodal lines in the condensate density that accompany the Dirac monopole. We also demonstrate that the monopole decay accelerates in weaker magnetic field gradients.

Spin statesmagneetitHigh Energy Physics::LatticeQC1-999Magnetic monopoleFOS: Physical sciencesGeneral Physics and Astronomy01 natural sciences010305 fluids & plasmasQuantization (physics)Atomic and Molecular Physics0103 physical sciences010306 general physicskvanttifysiikkamagnetsSpin-½PhysicsCondensed Matter::Quantum Gasesta114PhysicsMagnetic field gradientMagnetic fieldQuantum Gases (cond-mat.quant-gas)quantum physicsQuantum electrodynamicsParticleCondensed Matter - Quantum GasesRealization (systems)Physical Review X
researchProduct

High-Spin → Low-Spin Relaxation in [Fe(bpp)2](CF3SO3)2 H2O after LIESST and Thermal Spin-State Trapping—Dynamics of Spin Transition Versus Dynamics o…

1996

The iron(II) complex [Fe(bpp)2]-(CF3SO3)2 H2O (bpp = 2,6-bis(pyrazolyl-3-yl)pyridine) shows a thermal spin transition associated with a hysteresis of approximately 140 K width. The transition temperatures T1/2 (where the fraction of HS species γHS = 0.5) are 147 K and ≈285 K in the cooling and heating directions, respectively. The compound shows the LIESST and reverse-LIESST effects at low temperatures. The relaxation of the metastable HS states generated by LIESST was observed quantitatively at temperatures between 77.5 and 85 K by Mossbauer spectroscopy. Metastable HS states can also be generated by rapid cooling of the sample. The relaxation of the metastable HS states formed by thermal …

Phase transitionSpin statesChemistryOrganic ChemistryRelaxation (NMR)Analytical chemistrySpin transitionGeneral ChemistryMolecular physicsMagnetic susceptibilityCatalysisLIESSTSpin crossoverMetastabilityChemistry - A European Journal
researchProduct

Insights on the coupling between vibronically active molecular vibrations and lattice phonons in molecular nanomagnets

2021

Spin-lattice relaxation is a key open problem to understand the spin dynamics of single-molecule magnets and molecular spin qubits. While modelling the coupling between spin states and local vibrations allows to determine the more relevant molecular vibrations for spin relaxation, this is not sufficient to explain how energy is dissipated towards the thermal bath. Herein, we employ a simple and efficient model to examine the coupling of local vibrational modes with long-wavelength longitudinal and transverse phonons in the clock-like spin qubit [Ho(W$_5$O$_{18}$)$_2$]$^{9-}$. We find that in crystals of this polyoxometalate the vibrational mode previously found to be vibronically active at …

PhysicsCouplingSpin statesCondensed matter physicsPhononAnharmonicityRelaxation (NMR)FOS: Physical sciences02 engineering and technologyQuímica010402 general chemistry021001 nanoscience & nanotechnology01 natural sciences0104 chemical sciencesInorganic ChemistryQubitMolecular vibrationCondensed Matter::Strongly Correlated ElectronsPhysics - Atomic and Molecular ClustersPhysics::Chemical PhysicsAtomic and Molecular Clusters (physics.atm-clus)0210 nano-technologySpin-½
researchProduct

Light-Induced Excited Spin State Trapping in Iron(II) Complexes

1987

In the course of our studies on the thermally induced high spin (HS) ↔ low spin (LS) transition in iron(II) complexes /1/, \({\!^5{\text{T}}_2}_{\text{g}}\) ↔ \({\!^1{\text{A}}_1}_{\text{g}}\) in the approximation of Oh symmetry, we have observed in 1984 a new photophysical effect /2/: If, at sufficiently low temperature, the solid spin crossover complex is irradiated with green light into the \({\!^1{\text{A}}_1}\)→ \({\!^1{\text{T}}_1}\) ligand field absorption band, the thermodynamically stable LS state can be converted to the metastable HS state and trapped with practically infinite lifetime. We have called this unusual phenomenon “Light-Induced Excited Spin State Trapping (LIESST)”.

PhysicsLigand field theoryCrystallographySpin statesSpin crossoverAbsorption bandExcited stateMetastabilitySpin (physics)LIESST
researchProduct

Transport anisotropy and of thin films

2005

Abstract The resistivity R ( T ) of superconducting UNi 2 Al 3 thin films shows a pronounced dependence on the current direction. Specifically, the superconducting transition temperature T c is directional dependent as well as the influence of the magnetic ordering on the transport properties. Also the upper critical field B c 2 ( Θ , T ) is moderately influenced by the probe current direction. These anisotropies are discussed in the framework of multiband superconductivity. The initial slope of the upper critical field B c 2 ′ ( T ) provides evidence for a spin singlet state.

SuperconductivityMaterials scienceSpin statesCondensed matter physicsCondensed Matter PhysicsElectronic Optical and Magnetic MaterialsElectrical resistivity and conductivityCondensed Matter::SuperconductivitySinglet stateElectrical and Electronic EngineeringThin filmCurrent (fluid)AnisotropyCritical fieldPhysica B: Condensed Matter
researchProduct

A heterobimetallic [MnII5CuII5] nanowheel modulated by a flexible bis-oxamate type ligand

2015

The synthesis, crystal structure and preliminary magnetic characterization of a new heterobimetallic [MnII5CuII5] wheel containing a flexible bis-oxamate type ligand are described. This decanuclear compound exhibits a relatively strong intra-wheel antiferromagnetic interaction leading to a ground spin state S = 10.

Inorganic ChemistrySpin statesLigandChemistryStereochemistryAntiferromagnetismCrystal structureType (model theory)Dalton Transactions
researchProduct