Search results for "SPIN STATES"

showing 10 items of 253 documents

Enhancement of guest-responsivity by mesocrystallization of porous coordination polymers

2017

Mesocrystals of a porous coordination polymer {Fe(pz)[Pt(CN)4]} (1) showing spin transition were prepared by the reverse micelle method, and the size-controlled mesocrystal 1 kept its porous property and magnetic bistability and exhibited higher guest-responsivity with switching the spin state in both solid and aqueous suspension states than the bulk 1.

Materials scienceSpin states010405 organic chemistryCoordination polymerInorganic chemistryPorous Coordination PolymersSpin transitionGeneral Chemistry010402 general chemistry01 natural sciencesMicelle0104 chemical scienceschemistry.chemical_compoundResponsivitychemistryChemical engineeringMaterials ChemistryMesocrystalPorosityJournal of Materials Chemistry C
researchProduct

Building-up host-guest helicate motifs and chains: a magneto-structural study of new field-induced cobalt-based single-ion magnets.

2021

In this work, we present the synthetic pathway, a refined structural description, complete solid-state characterization and the magnetic properties of four new cobalt(II) compounds of formulas [Co(H2O)6][Co2(H2mpba)3]·2H2O·0.5dmso (1), [Co(H2O)6][Co2(H2mpba)3]·3H2O·0.5dpss (2), [Co2(H2mpba)2(H2O)4]n·4nH2O (3), and [Co2(H2mpba)2(CH3OH)2(H2O)2]n·0.5nH2O·2ndpss (4) [dpss = 2,2′-dipyridyldisulfide and H4mpba = 1,3-phenylenebis(oxamic) acid], where 2 and 4 were obtained from [Co(dpss)Cl2] (Pre-I) as the source of cobalt(II). All four compounds are air-stable and were prepared under ambient conditions. 1 and 2 were obtained from a slow diffusion method [cobalt(II) : H2mpba2− molar ratio used 1 : …

Materials scienceSpin states010405 organic chemistryHydrogen bondSupramolecular chemistrychemistry.chemical_element010402 general chemistry01 natural sciencesMagnetic susceptibility0104 chemical sciencesIonInorganic ChemistryCrystallographychemistryMagnetMoleculeCobaltDalton transactions (Cambridge, England : 2003)
researchProduct

Reversible guest-induced gate-opening with multiplex spin crossover responses in two-dimensional Hofmann clathrates.

2021

Spin crossover (SCO) compounds are very attractive types of switchable materials due to their potential applications in memory devices, actuators or chemical sensors. Rational chemical tailoring of these switchable compounds is key for achieving new functionalities in synergy with the spin state change. However, the lack of precise structural information required to understand the chemical principles that control the SCO response with external stimuli may eventually hinder further development of spin switching-based applications. In this work, the functionalization with an amine group in the two-dimensional (2D) SCO compound {Fe(5-NH2Pym)2[MII(CN)4]} (1M, 5-NH2Pym = 5-aminopyrimidine, MII =…

Materials scienceSpin states010405 organic chemistryKineticsGeneral Chemistry010402 general chemistry01 natural sciences3. Good health0104 chemical sciencesChemistryChemical physicsSpin crossoverDesorptionSurface modificationMoleculeSpin (physics)Single crystalChemical science
researchProduct

A diamagnetic iron complex and its twisted sister – structural evidence on partial spin state change in a crystalline iron complex

2021

We report here the syntheses of a diamagnetic Fe complex [Fe(HL)2] (1), prepared by reacting a redox non-innocent ligand precursor N,N′-bis(3,5-di-tert-butyl-2-hydroxy-phenyl)-1,2-phenylenediamine (H4L) with FeCl3, and its phenoxazine derivative [Fe(L′)2] (2), which was obtained via intra-ligand cyclisation of the parent complex. Magnetic measurements, accompanied by spectroscopic, structural and computational analyses show that 1 can be viewed as a rather unusual Fe(III) complex with a diamagnetic ground state in the studied temperature range due to a strong antiferromagnetic coupling between the low-spin Fe(III) ion and a radical ligand. For a paramagnetic high-spin Fe(II) complex 2 it wa…

Materials scienceSpin states010405 organic chemistryLigand010402 general chemistry01 natural sciences0104 chemical sciencesInorganic ChemistryParamagnetismCrystallographyCrystallinityUnpaired electronDiamagnetismGround stateSingle crystalDalton Transactions
researchProduct

Wavelength selective light-induced magnetic effects in the binuclear spin crossover compound{[Fe(bt)(NCS)2]2(bpym)}

2007

Using Fourier transform infrared spectroscopy, x-ray diffraction, and magnetic susceptibility measurements under light irradiation, the selective light-induced excited spin state trapping (LIESST) and the reversible-LIESST effect have been evidenced and studied in depth in the binuclear spin crossover compound {[Fe(bt)(NCS)2]2bpym}. In this system, each magnetic site can switch from low spin (LS) to high spin (HS), so that three states exist, namely, the LS-LS, HS-LS, and HS-HS. All these techniques shine a new light on the high phototunability of this system. In addition to the direct photoswitching from the LS-LS to the HS-LS or to the HS-HS state, here we show that photoinduced switching…

Materials scienceSpin statesCondensed matter physics010405 organic chemistry010402 general chemistryCondensed Matter Physics01 natural sciencesMagnetic susceptibilityMolecular physicsLIESST0104 chemical sciencesElectronic Optical and Magnetic MaterialsCrystalSpin crossoverExcited stateIrradiationSpin (physics)Physical Review B
researchProduct

Design of Bistable Gold@Spin‐Crossover Core–Shell Nanoparticles Showing Large Electrical Responses for the Spin Switching

2019

<p>A simple protocol to prepare core-shell gold@spin-crossover (Au@SCO) nanoparticles (NPs) based on the 1D spin-crossover [Fe(Htrz)<sub>2</sub>(trz)](BF<sub>4</sub>) coordination polymer is reported. The synthesis relies on a two-step approach consisting on a partial surface ligand substitution of the citrate-stabilized Au NPs followed by the controlled growth of a very thin layer of the SCO polymer. As a result, colloidally stable core@shell spherical NPs of 19 nm in size exhibiting a narrow distribution in sizes have been obtained, revealing a switchable SCOshell of <i>ca.</i>4 nm. Temperature-dependent charge transport measurements of an electri…

Materials scienceSpin statesCoordination polymerNanotecnologiaMechanical EngineeringSpin transitionNanoparticleConductanceMolecular electronics02 engineering and technologyCiència dels materials010402 general chemistry021001 nanoscience & nanotechnology01 natural sciences0104 chemical scienceschemistry.chemical_compoundElectrònica molecularDifferential scanning calorimetrychemistryMechanics of MaterialsChemical physicsSpin crossoverGeneral Materials Science0210 nano-technologyAdvanced Materials
researchProduct

Guest induced reversible on–off switching of elastic frustration in a 3D spin crossover coordination polymer with room temperature hysteretic behavio…

2021

A binary reversible switch between low-temperature multi-step spin crossover (SCO), through the evolution of the population γHS(T) with high-spin (HS)-low-spin (LS) sequence: HS1LS0 (state 1) ↔ HS2/3LS1/3 (state 2) ↔ HS1/2LS1/2 (state 3) ↔ HS1/3LS2/3 (state 4) ↔ HS0LS1 (state 5), and complete one step hysteretic spin transition featuring 20 K wide thermal hysteresis centred at 290 K occurs in the three-dimensional (3D) Hofmann-type porous coordination polymer {FeII(3,8phen)[Au(CN)2]2}·xPhNO2 (3,8phen = 3,8-phenanthroline, PhNO2 = nitrobenzene), made up of two identical interpenetrated pcu-type frameworks. The included PhNO2 guest (x = 1, 1·PhNO2) acts as a molecular wedge between the interp…

Materials scienceSpin statesCoordination polymermedia_common.quotation_subjectPopulationSpin transitionFrustration010402 general chemistry01 natural scienceschemistry.chemical_compoundSpin crossoverMetastability[CHIM.CRIS]Chemical Sciences/CristallographySymmetry breakingeducationComputingMilieux_MISCELLANEOUSmedia_common[PHYS]Physics [physics]education.field_of_studyCondensed matter physics010405 organic chemistryGeneral Chemistry0104 chemical sciencesChemistrychemistry[PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci]
researchProduct

Design of single cyanide-bridged tetranuclear bimetallic rectangles exhibiting ferromagnetic coupling

2005

Abstract The cyanide-bridged tetranuclear bimetallic rectangles ( XPh 4 ) 4 [ Fe 2 III Cu 2 II ( μ - CN ) 4 ( CN ) 8 ( L ) 2 ] · n H 2 O [X = P (1) and As (2); L = bpcam (1) and bpca (2); n = 4 (1) and 0 (2)] have been prepared and their crystal structures were characterized by single crystal X-ray diffraction; 1 exhibits intramolecular ferromagnetic interactions (J1 = +3.7 cm−1 and J2 = +7.0 cm−1, H = - J 1 [ S Fe ( 1 ) · S Cu ( 1 ) + S Fe ( 1 a ) · S Cu ( 1 a ) ] − J 2 [ S Fe ( 1 ) · S Cu ( 1 a ) + S Fe ( 1 a ) · S Cu ( 1 ) ] + D [ S Fe ( 1 ) z 2 + S Fe ( 1 a ) z 2 ] ) leading to a low-lying S = 2 spin state.

Materials scienceSpin statesCyanideCrystal structureCoupling (probability)Inorganic ChemistryCrystallographychemistry.chemical_compoundFerromagnetismchemistryIntramolecular forceMaterials ChemistryPhysical and Theoretical ChemistrySingle crystalBimetallic stripInorganic Chemistry Communications
researchProduct

Spin state, electronic structure and bonding on C-scorpionate [Fe(II)Cl2(tpm)] catalyst: An experimental and computational study

2020

Abstract The Fe(II) spin state in the condensed phase of [Fe(II)Cl2(tpm)] (tpm = [tris(pyrazol-1-yl)methane]; 1) catalyst has been determined through a combined experimental and theoretical investigation of X-Ray Absorption Spectroscopy (XAS) at the FeL2,3-edges and NK-edge. Results indicated that in this phase a mixed singlet/triplet state is plausible. These results have been compared with the already know Fe singlet spin state of the same complex in water solution. A detailed analysis of the electronic structure and bonding mechanism of the catalyst showed that the preference for the low-spin diamagnetic ground state, strongly depends upon the ligands, the bulk solvent and the interactio…

Materials scienceSpin statesDFT calculationHomogeneous catalysis02 engineering and technologyElectronic structure010402 general chemistryDFT calculations01 natural sciencesCatalysisSinglet stateTriplet stateDFT calculations.HOMO/LUMOX-ray absorption spectroscopyC-scorpionate catalystX-ray absorption spectroscopyGeneral Chemistry021001 nanoscience & nanotechnology0104 chemical sciencesSpin statesC-scorpionate catalyst; DFT calculations; Spin states; X-ray absorption spectroscopySpin statePhysical chemistry0210 nano-technologyGround state
researchProduct

Pressure effect investigations on spin-crossover coordination compounds

2018

International audience; The piezochromic properties of spin-crossover complexes have been recognized for a long time, with increasing pressure favouring the low spin state due to its smaller volume and therefore shifting the spin equilibrium towards higher temperatures and accelerating the relaxation at a given temperature. However, the interpretation and quantification of pressure-induced changes have been several times compromised by the relatively poor and incomplete spectral and structural information provided by the detection methods or due to the experimental difficulties related to the need for hydrostatic conditions at low temperatures. The present review is therefore primarily focu…

Materials scienceSpin statesGeneral Chemical Engineering02 engineering and technology010402 general chemistry01 natural scienceslaw.inventionCoordination complexlawSpin crossoverQD[CHIM.COOR]Chemical Sciences/Coordination chemistryHigh-pressure chemistrySpin-½chemistry.chemical_classificationRelaxation (NMR)General Chemistry021001 nanoscience & nanotechnologySpin crossover0104 chemical sciencesVolume (thermodynamics)chemistryChemical physicsHydrostatic equilibrium0210 nano-technologyPressure generation
researchProduct