Search results for "STATISTICS & PROBABILITY"

showing 10 items of 436 documents

Core of communities in bipartite networks

2017

We use the information present in a bipartite network to detect cores of communities of each set of the bipartite system. Cores of communities are found by investigating statistically validated projected networks obtained using information present in the bipartite network. Cores of communities are highly informative and robust with respect to the presence of errors or missing entries in the bipartite network. We assess the statistical robustness of cores by investigating an artificial benchmark network, the co-authorship network, and the actor-movie network. The accuracy and precision of the partition obtained with respect to the reference partition are measured in terms of the adjusted Ran…

FOS: Computer and information sciencesAccuracy and precisionPhysics - Physics and SocietyBipartite systemRand indexFOS: Physical sciencesPhysics and Society (physics.soc-ph)computer.software_genre01 natural sciences010104 statistics & probabilityRobustness (computer science)0103 physical sciences01.02. Számítás- és információtudomány0101 mathematics010306 general physicsMathematicsSocial and Information Networks (cs.SI)Probability and statisticsComputer Science - Social and Information NetworksSettore FIS/07 - Fisica Applicata(Beni Culturali Ambientali Biol.e Medicin)network theory community detectionPhysics - Data Analysis Statistics and ProbabilityBipartite graphData miningcomputerData Analysis Statistics and Probability (physics.data-an)
researchProduct

Group Importance Sampling for particle filtering and MCMC

2018

Bayesian methods and their implementations by means of sophisticated Monte Carlo techniques have become very popular in signal processing over the last years. Importance Sampling (IS) is a well-known Monte Carlo technique that approximates integrals involving a posterior distribution by means of weighted samples. In this work, we study the assignation of a single weighted sample which compresses the information contained in a population of weighted samples. Part of the theory that we present as Group Importance Sampling (GIS) has been employed implicitly in different works in the literature. The provided analysis yields several theoretical and practical consequences. For instance, we discus…

FOS: Computer and information sciencesComputer Science - Machine LearningComputer sciencePosterior probabilityMonte Carlo methodMachine Learning (stat.ML)02 engineering and technologyMultiple-try MetropolisStatistics - Computation01 natural sciencesMachine Learning (cs.LG)Computational Engineering Finance and Science (cs.CE)Methodology (stat.ME)010104 statistics & probabilitysymbols.namesake[INFO.INFO-TS]Computer Science [cs]/Signal and Image ProcessingStatistics - Machine LearningArtificial IntelligenceResampling0202 electrical engineering electronic engineering information engineering0101 mathematicsElectrical and Electronic EngineeringComputer Science - Computational Engineering Finance and ScienceStatistics - MethodologyComputation (stat.CO)ComputingMilieux_MISCELLANEOUSMarkov chainApplied Mathematics020206 networking & telecommunicationsMarkov chain Monte CarloStatistics::ComputationComputational Theory and MathematicsSignal ProcessingsymbolsComputer Vision and Pattern RecognitionStatistics Probability and UncertaintyParticle filter[SPI.SIGNAL]Engineering Sciences [physics]/Signal and Image processingAlgorithmImportance samplingDigital Signal Processing
researchProduct

A Review of Multiple Try MCMC algorithms for Signal Processing

2018

Many applications in signal processing require the estimation of some parameters of interest given a set of observed data. More specifically, Bayesian inference needs the computation of {\it a-posteriori} estimators which are often expressed as complicated multi-dimensional integrals. Unfortunately, analytical expressions for these estimators cannot be found in most real-world applications, and Monte Carlo methods are the only feasible approach. A very powerful class of Monte Carlo techniques is formed by the Markov Chain Monte Carlo (MCMC) algorithms. They generate a Markov chain such that its stationary distribution coincides with the target posterior density. In this work, we perform a t…

FOS: Computer and information sciencesComputer scienceMonte Carlo methodMachine Learning (stat.ML)02 engineering and technologyMultiple-try MetropolisBayesian inference01 natural sciencesStatistics - Computation010104 statistics & probabilitysymbols.namesakeArtificial IntelligenceStatistics - Machine Learning0202 electrical engineering electronic engineering information engineering0101 mathematicsElectrical and Electronic EngineeringComputation (stat.CO)Signal processingMarkov chainApplied MathematicsEstimator020206 networking & telecommunicationsMarkov chain Monte CarloStatistics::ComputationComputational Theory and MathematicsSignal ProcessingsymbolsSample spaceComputer Vision and Pattern RecognitionStatistics Probability and UncertaintyAlgorithm
researchProduct

Modeling temporal treatment effects with zero inflated semi-parametric regression models: The case of local development policies in France

2017

International audience; A semi-parametric approach is proposed to estimate the variation along time of the effects of two distinct public policies that were devoted to boost rural development in France over a similar period of time. At a micro data level, it is often observed that the dependent variable, such as local employment, does not vary along time, so that we face a kind of zero inflated phenomenon that cannot be dealt with a continuous response model. We introduce a conditional mixture model which combines a mass at zero and a continuous response. The suggested zero inflated semi-parametric statistical approach relies on the flexibility and modularity of additive models with the abi…

FOS: Computer and information sciencesEconomics and EconometricsLocal Developmentsemiparametric regressiondifferencePublic policyselection01 natural sciencesStatistics - Applicationslocal developmentpanel data010104 statistics & probabilityEconomica0502 economics and businessEconometricsApplications (stat.AP)0101 mathematics[MATH]Mathematics [math]Additive modelsemi-parametric regressionenterprise zonespropensity scoreJEL Classification: C14 C23 C54 O18050205 econometrics Mathematicsinferencesmoothing parametertemporal effects05 social sciencesSH1_2SH1_6multiple treatmentspolicy evaluation[SHS.ECO]Humanities and Social Sciences/Economics and FinanceZero (linguistics)Rural developmentVariation (linguistics)asymptoticsmixture of distributionsSemi parametric regressionAdditive modelsPanel dataAdditive models; local development; mixture of distributions; multiple treatments; panel data; policy evaluation; semiparametric regression; temporal effects
researchProduct

Do-search -- a tool for causal inference and study design with multiple data sources

2020

Epidemiologic evidence is based on multiple data sources including clinical trials, cohort studies, surveys, registries, and expert opinions. Merging information from different sources opens up new possibilities for the estimation of causal effects. We show how causal effects can be identified and estimated by combining experiments and observations in real and realistic scenarios. As a new tool, we present do-search, a recently developed algorithmic approach that can determine the identifiability of a causal effect. The approach is based on do-calculus, and it can utilize data with nontrivial missing data and selection bias mechanisms. When the effect is identifiable, do-search outputs an i…

FOS: Computer and information sciencesEpidemiologyComputer sciencemedia_common.quotation_subjectInformation Storage and RetrievalMachine learningcomputer.software_genre01 natural sciencesStatistics - ApplicationsMethodology (stat.ME)010104 statistics & probability03 medical and health sciences0302 clinical medicineHumansApplications (stat.AP)030212 general & internal medicine0101 mathematicsSalt intakeStatistics - Methodologymedia_commonSelection biasbusiness.industryNutrition SurveysMissing dataCausalityCausalityResearch DesignCausal inferenceMeta-analysisSurvey data collectionIdentifiabilityArtificial intelligencebusinesscomputer
researchProduct

CLEAR: Covariant LEAst-Square Refitting with Applications to Image Restoration

2017

International audience; In this paper, we propose a new framework to remove parts of the systematic errors affecting popular restoration algorithms, with a special focus for image processing tasks. Generalizing ideas that emerged for $\ell_1$ regularization, we develop an approach re-fitting the results of standard methods towards the input data. Total variation regularizations and non-local means are special cases of interest. We identify important covariant information that should be preserved by the re-fitting method, and emphasize the importance of preserving the Jacobian (w.r.t. the observed signal) of the original estimator. Then, we provide an approach that has a ``twicing'' flavor a…

FOS: Computer and information sciencesInverse problemsMathematical optimization[ INFO.INFO-TS ] Computer Science [cs]/Signal and Image ProcessingComputer Vision and Pattern Recognition (cs.CV)General MathematicsComputer Science - Computer Vision and Pattern RecognitionMachine Learning (stat.ML)Mathematics - Statistics TheoryImage processingStatistics Theory (math.ST)02 engineering and technologyDebiasing[ INFO.INFO-CV ] Computer Science [cs]/Computer Vision and Pattern Recognition [cs.CV]01 natural sciencesRegularization (mathematics)Boosting010104 statistics & probabilitysymbols.namesake[INFO.INFO-TS]Computer Science [cs]/Signal and Image Processing[STAT.ML]Statistics [stat]/Machine Learning [stat.ML]Variational methods[MATH.MATH-ST]Mathematics [math]/Statistics [math.ST]Statistics - Machine LearningRefittingMSC: 49N45 65K10 68U10[ INFO.INFO-TI ] Computer Science [cs]/Image ProcessingFOS: Mathematics0202 electrical engineering electronic engineering information engineeringCovariant transformation[ MATH.MATH-ST ] Mathematics [math]/Statistics [math.ST]0101 mathematicsImage restoration[ STAT.ML ] Statistics [stat]/Machine Learning [stat.ML]MathematicsApplied Mathematics[INFO.INFO-CV]Computer Science [cs]/Computer Vision and Pattern Recognition [cs.CV]EstimatorInverse problem[INFO.INFO-TI]Computer Science [cs]/Image Processing [eess.IV]Jacobian matrix and determinantsymbolsTwicing020201 artificial intelligence & image processingAffine transformationAlgorithm
researchProduct

Metropolis Sampling

2017

Monte Carlo (MC) sampling methods are widely applied in Bayesian inference, system simulation and optimization problems. The Markov Chain Monte Carlo (MCMC) algorithms are a well-known class of MC methods which generate a Markov chain with the desired invariant distribution. In this document, we focus on the Metropolis-Hastings (MH) sampler, which can be considered as the atom of the MCMC techniques, introducing the basic notions and different properties. We describe in details all the elements involved in the MH algorithm and the most relevant variants. Several improvements and recent extensions proposed in the literature are also briefly discussed, providing a quick but exhaustive overvie…

FOS: Computer and information sciencesMachine Learning (stat.ML)020206 networking & telecommunications02 engineering and technologyStatistics - Computation01 natural sciencesStatistics::ComputationMethodology (stat.ME)010104 statistics & probabilityStatistics - Machine Learning0202 electrical engineering electronic engineering information engineering0101 mathematicsComputation (stat.CO)Statistics - MethodologyWiley StatsRef: Statistics Reference Online
researchProduct

Adaptive independent sticky MCMC algorithms

2018

In this work, we introduce a novel class of adaptive Monte Carlo methods, called adaptive independent sticky MCMC algorithms, for efficient sampling from a generic target probability density function (pdf). The new class of algorithms employs adaptive non-parametric proposal densities which become closer and closer to the target as the number of iterations increases. The proposal pdf is built using interpolation procedures based on a set of support points which is constructed iteratively based on previously drawn samples. The algorithm's efficiency is ensured by a test that controls the evolution of the set of support points. This extra stage controls the computational cost and the converge…

FOS: Computer and information sciencesMathematical optimizationAdaptive Markov chain Monte Carlo (MCMC)Monte Carlo methodBayesian inferenceHASettore SECS-P/05 - Econometrialcsh:TK7800-8360Machine Learning (stat.ML)02 engineering and technologyBayesian inference01 natural sciencesStatistics - Computationlcsh:Telecommunication010104 statistics & probabilitysymbols.namesakeAdaptive Markov chain Monte Carlo (MCMC); Adaptive rejection Metropolis sampling (ARMS); Bayesian inference; Gibbs sampling; Hit and run algorithm; Metropolis-within-Gibbs; Monte Carlo methods; Signal Processing; Hardware and Architecture; Electrical and Electronic EngineeringGibbs samplingStatistics - Machine Learninglcsh:TK5101-67200202 electrical engineering electronic engineering information engineeringComputational statisticsMetropolis-within-GibbsHit and run algorithm0101 mathematicsElectrical and Electronic EngineeringGaussian processComputation (stat.CO)MathematicsSignal processinglcsh:Electronics020206 networking & telecommunicationsMarkov chain Monte CarloMonte Carlo methodsHardware and ArchitectureSignal ProcessingSettore SECS-S/03 - Statistica EconomicasymbolsSettore SECS-S/01 - StatisticaStatistical signal processingGibbs samplingAdaptive rejection Metropolis sampling (ARMS)EURASIP Journal on Advances in Signal Processing
researchProduct

Heretical Mutiple Importance Sampling

2016

Multiple Importance Sampling (MIS) methods approximate moments of complicated distributions by drawing samples from a set of proposal distributions. Several ways to compute the importance weights assigned to each sample have been recently proposed, with the so-called deterministic mixture (DM) weights providing the best performance in terms of variance, at the expense of an increase in the computational cost. A recent work has shown that it is possible to achieve a trade-off between variance reduction and computational effort by performing an a priori random clustering of the proposals (partial DM algorithm). In this paper, we propose a novel "heretical" MIS framework, where the clustering …

FOS: Computer and information sciencesMean squared errorComputer scienceApplied MathematicsEstimator020206 networking & telecommunications02 engineering and technologyVariance (accounting)Statistics - Computation01 natural sciencesReduction (complexity)010104 statistics & probability[INFO.INFO-TS]Computer Science [cs]/Signal and Image ProcessingSignal Processing0202 electrical engineering electronic engineering information engineeringA priori and a posterioriVariance reduction0101 mathematicsElectrical and Electronic EngineeringCluster analysisAlgorithm[SPI.SIGNAL]Engineering Sciences [physics]/Signal and Image processingImportance samplingComputation (stat.CO)ComputingMilieux_MISCELLANEOUS
researchProduct

The Recycling Gibbs sampler for efficient learning

2018

Monte Carlo methods are essential tools for Bayesian inference. Gibbs sampling is a well-known Markov chain Monte Carlo (MCMC) algorithm, extensively used in signal processing, machine learning, and statistics, employed to draw samples from complicated high-dimensional posterior distributions. The key point for the successful application of the Gibbs sampler is the ability to draw efficiently samples from the full-conditional probability density functions. Since in the general case this is not possible, in order to speed up the convergence of the chain, it is required to generate auxiliary samples whose information is eventually disregarded. In this work, we show that these auxiliary sample…

FOS: Computer and information sciencesMonte Carlo methodSlice samplingInferenceMachine Learning (stat.ML)02 engineering and technologyBayesian inferenceStatistics - Computation01 natural sciencesMachine Learning (cs.LG)010104 statistics & probabilitysymbols.namesake[INFO.INFO-TS]Computer Science [cs]/Signal and Image ProcessingStatistics - Machine LearningArtificial IntelligenceStatistics0202 electrical engineering electronic engineering information engineering0101 mathematicsElectrical and Electronic EngineeringGaussian processComputation (stat.CO)ComputingMilieux_MISCELLANEOUSMathematicsChain rule (probability)Applied Mathematics020206 networking & telecommunicationsMarkov chain Monte CarloStatistics::ComputationComputer Science - LearningComputational Theory and MathematicsSignal ProcessingsymbolsComputer Vision and Pattern RecognitionStatistics Probability and UncertaintyAlgorithm[SPI.SIGNAL]Engineering Sciences [physics]/Signal and Image processingGibbs samplingDigital Signal Processing
researchProduct