Search results for "SYMMETRIES"
showing 10 items of 84 documents
Direct measurement of the mass difference of $^{72}$As-$^{72}$Ge rules out $^{72}$As as a promising $\beta$-decay candidate to determine the neutrino…
2021
We report the first direct determination of the ground-state to ground-state electron-capture $Q$-value for the $^{72}$As to $^{72}$Ge decay by measuring their atomic mass difference utilizing the double Penning trap mass spectrometer, JYFLTRAP. The $Q$-value was measured to be 4343.596(75)~keV, which is more than a 50-fold improvement in precision compared to the value in the most recent Atomic Mass Evaluation 2020. Furthermore, the new $Q$-value was found to be 12.4(40)~keV (3.1 $\sigma$) lower. With the significant reduction of the uncertainty of the ground-state to ground-state $Q$-value value combined with the level scheme of $^{72}$Ge from $\gamma$-ray spectroscopy, we confirm that th…
A SU(4) circle times O(3) scheme for nonstrange baryons
2007
4 pages, 3 tables.-- PACS nrs.: 12.39.Jh, 14.20.-c, 14.20.Gk.-- ISI Article Identifier: 000245667300027.-- ArXiv pre-print available at: http://arxiv.org/abs/hep-ph/0610257
Experimental investigation of transverse spin asymmetries in muon-p SIDIS processes: Sivers asymmetries
2012
The COMPASS Collaboration at CERN has measured the transverse spin azimuthal asymmetry of charged hadrons produced in semi-inclusive deep inelastic scattering using a 160 GeV positive muon beam and a transversely polarised NH_3 target. The Sivers asymmetry of the proton has been extracted in the Bjorken x range 0.003 0.03. The asymmetry is different from zero and positive also in the low x region, where sea-quarks dominate. The kinematic dependence of the asymmetry has also been investigated and results are given for various intervals of hadron and virtual photon fractional energy. In contrast to the case of the Collins asymmetry, the results on the Sivers asymmetry suggest a strong depende…
Contribution of exclusive diffractive processes to the measured azimuthal asymmetries in SIDIS
2019
Hadron leptoproduction in Semi-Inclusive measurements of Deep-Inelastic Scattering (SIDIS) on unpolarised nucleons allows one to get information on the intrinsic transverse momentum of quarks in a nucleon and on the Boer-Mulders function through the measurement of azimuthal modulations in the cross section. These modulations were recently measured by the HERMES experiment at DESY on proton and deuteron targets, and by the COMPASS experiment using the CERN SPS muon beam and a $^6$LiD target. In both cases, the amplitudes of the $\cos\phi_h$ and $\cos 2\phi_h$ modulations show strong kinematic dependences for both positive and negative hadrons. It has been known since some time that the measu…
Neutrino phenomenology and stable dark matter with A4
2011
We present a model based on the A4 non-abelian discrete symmetry leading to a predictive five-parameter neutrino mass matrix and providing a stable dark matter candidate. We found an interesting correlation among the atmospheric and the reactor angles which predicts theta_23 ~ pi/4 for very small reactor angle and deviation from maximal atmospheric mixing for large theta_13. Only normal neutrino mass spectrum is possible and the effective mass entering the neutrinoless double beta decay rate is constrained to be |m_ee| > 4 10^{-4} eV.
What can be learned from the Belle spectrum for the decay τ−→ντKSπ−
2008
Abstract A theoretical description of the differential decay spectrum for the decay τ − → ν τ K S π − , which is based on the contributing Kπ vector and scalar form factors F + K π ( s ) and F 0 K π ( s ) being calculated in the framework of resonance chiral theory (R χ T), additionally imposing constraints from dispersion relations as well as short distance QCD, provides a good representation of a recent measurement of the spectrum by the Belle Collaboration. Our fit allows to deduce the total branching fraction B [ τ − → ν τ K S π − ] = 0.427 ± 0.024 % by integrating the spectrum, as well as the K ∗ resonance parameters M K ∗ = 895.3 ± 0.2 MeV and Γ K ∗ = 47.5 ± 0.4 MeV , where the last t…
Evidence for a Particle Produced in Association with Weak Bosons and Decaying to a Bottom-Antibottom Quark Pair in Higgs Boson Searches at the Tevatr…
2012
Aaltonen, T. et al.
MR2991872 Bender, Carl M.; Kuzhel, Sergii Unbounded C-symmetries and their nonuniqueness. J. Phys. A 45 (2012), no. 44, 444005, 14 pp. (Reviewer: Cam…
2013
Dimensionality of the Superconductivity in the Transition Metal Pnictide WP
2020
We report theoretical and experimental results on the transition metal pnictide WP. The theoretical outcomes based on tight-binding calculations and density functional theory indicate that WP is a three-dimensional superconductor with an anisotropic electronic structure and nonsymmorphic symmetries. On the other hand, magnetoresistance experimental data and the analysis of superconducting fluctuations of the conductivity in external magnetic field indicate a weakly anisotropic three-dimensional superconducting phase.
Electroweak breaking and neutrino mass
2017
En este trabajo de tesis hemos analizado algunas de las posibles conexiones entre la generación de la masa de los neutrinos y la nueva física. Para ello, como preámbulo, en el primer capítulo hemos hecho un repaso del Modelo Estándar (SM) de la física de partículas, siendo ésta la descripción más precisa que tenemos de las las interacciones fuertes, débiles y electromagnéticas. Sin embargo, existen algunas interrogantes a las que el SM no ofrece respuesta, por ejemplo, ¿Por qué hay tres familias de quarks y leptones?, ¿Cuál es la explicación a la jerarquía de las masas de los fermiones y a sus ángulos de mezcla?, ¿Cómo explicar la jerarquía entre la escala electrodébil y la escala de Planck…