Search results for "Saccharomyces cerevisiae Proteins"

showing 10 items of 231 documents

The three trehalases Nth1p, Nth2p and Ath1p participate in the mobilization of intracellular trehalose required for recovery from saline stress in Sa…

2009

Trehalose accumulation is a common response to several stresses in the yeast Saccharomyces cerevisiae. This metabolite protects proteins and membrane lipids from structural damage and helps cells to maintain integrity. Based on genetic studies, degradation of trehalose has been proposed as a required mechanism for growth recovery after stress, and the neutral trehalase Nth1p as the unique degradative activity involved. Here we constructed a collection of mutants for several trehalose metabolism and transport genes and analysed their growth and trehalose mobilization profiles during experiments of saline stress recovery. The behaviour of the triple ¿nth1¿nth2¿ath1 and quadruple ¿nth1¿nth2¿at…

Saccharomyces cerevisiae ProteinsMonosaccharide Transport ProteinsSymportersMutantSaccharomyces cerevisiaeGenes FungalTrehaloseMetabolismSaccharomyces cerevisiaeBiologybiology.organism_classificationMicrobiologyTrehaloseYeastchemistry.chemical_compoundBiochemistrychemistryStress PhysiologicalSymporterTrehalaseTrehalaseIntracellularGene DeletionMicrobiology (Reading, England)
researchProduct

Functional distinction between Cln1p and Cln2p cyclins in the control of the Saccharomyces cerevisiae mitotic cycle.

2004

Abstract Cln1p and Cln2p are considered as equivalent cyclins on the basis of sequence homology, regulation, and functional studies. Here we describe a functional distinction between the Cln1p and Cln2p cyclins in the control of the G1/S transition. Inactivation of CLN2, but not of CLN1, leads to a larger-than-normal cell size, whereas overexpression of CLN2, but not of CLN1, results in smaller-than-normal cells. Furthermore, mild ectopic expression of CLN2, but not of CLN1, suppresses the lethality of swi4swi6 and cdc28 mutant strains. In the absence of Cln1p, the kinetics of budding, initiation of DNA replication, and activation of the Start-transcription program are not affected; by cont…

Saccharomyces cerevisiae ProteinsMutantSaccharomyces cerevisiaeBlotting WesternMitosisSaccharomyces cerevisiaeBiologyInvestigationsmedicine.disease_causeS PhaseCyclinsGeneticsmedicineImmunoprecipitationFluorescent Antibody Technique IndirectMitosisCyclinCell SizeGeneticsCyclin-dependent kinase 1MutationDNA replicationbiology.organism_classificationBlotting NorthernBridged Bicyclo Compounds HeterocyclicFlow CytometryMolecular biologyThiazolesMutationThiazolidinesEctopic expressionGenetics
researchProduct

Blockage of cell wall receptors for yeast killer toxin KT28 with antimannoprotein antibodies.

1990

Binding of yeast killer toxin KT28 to its primary cell wall receptor was specifically blocked with polyclonal antimannoprotein antibodies which masked all toxin-binding sites on the surface of sensitive yeast cells. By indirect immunofluorescence, it was shown that KT28 binds to the cell wall mannoprotein and that the toxin resistance of mannoprotein mutants (mnn) of Saccharomyces cerevisiae was due to a lack of killer toxin-binding sites within the yeast cell wall. Structural analysis of acetylated mannoprotein from KT28-resistant mutant strains identified the outer mannotriose side chains as the actual killer toxin-binding domains.

Saccharomyces cerevisiae ProteinsMutantSaccharomyces cerevisiaeFluorescent Antibody TechniqueSaccharomyces cerevisiaeBiologymedicine.disease_causeAntibodiesCell wallCell WallmedicinePharmacology (medical)ReceptorPharmacologyMembrane GlycoproteinsToxinMycotoxinsbiology.organism_classificationYeastKiller Factors YeastCell biologycarbohydrates (lipids)Infectious DiseasesBiochemistryPolyclonal antibodiesbiology.proteinAntibodyResearch Article
researchProduct

The YJL185C, YLR376C and YJR129C genes of Saccharomyces cerevisiae are probably involved in regulation of the glyoxylate cycle

2006

The ER24 aci (acidification) mutant of Saccharomyces cerevisiae excreting protons in the absence of glucose was transformed with a multicopy yeast DNA plasmid library. Three different DNA fragments restored the wild-type phenotype termed Aci- because it does not acidify the complete glucose medium under the tested conditions. Molecular dissection of the transforming DNA fragments identified two multicopy suppressor genes YJL185C, YJR129C and one allelic YLR376C. Disruption of either of the three genes in wild-type yeast strain resulted in acidification of the medium (Aci+ phenotype) similarly to the original ER24 mutant. These data indicate the contribution of the ER24 gene product Ylr376Cp…

Saccharomyces cerevisiae ProteinsMutantSaccharomyces cerevisiaeGenes FungalGlyoxylate cycleAutophagy-Related ProteinsGlyoxylatesMethyltransferasesSaccharomyces cerevisiaeBiologyHydrogen-Ion Concentrationbiology.organism_classificationGeneral Biochemistry Genetics and Molecular BiologyYeastCulture MediaGene productchemistry.chemical_compoundPlasmidchemistryBiochemistryGenes SuppressorGeneDNAMetabolic Networks and Pathways
researchProduct

Molecular structure of the cell wall receptor for killer toxin KT28 in Saccharomyces cerevisiae

1988

The adsorption of the yeast killer toxin KT28 to susceptible cells of Saccharomyces cerevisiae was prevented by concanavalin A, which blocks the mannoprotein receptor. Certain mannoprotein mutants of S. cerevisiae that lack definite structures in the mannan of their cell walls were found to be resistant to KT28, whereas the wild-type yeast from which the mutants were derived was susceptible. Isolated mannoprotein from a resistant mutant was unable to adsorb killer toxin. By comparing the resistances of different mannoprotein mutants, information about the molecular structure of the receptor was obtained. At least two mannose residues have to be present in the side chains of the outer chain …

Saccharomyces cerevisiae ProteinsMutantSaccharomyces cerevisiaeMannoseReceptors Cell Surfacechemical and pharmacologic phenomenaSaccharomyces cerevisiaeSpheroplastsMicrobiologyFungal Proteinschemistry.chemical_compoundCell WallConcanavalin AReceptorMolecular BiologyGlycoproteinsMannanMembrane GlycoproteinsbiologyMycotoxinsSpheroplastbiology.organism_classificationKiller Factors YeastYeastcarbohydrates (lipids)BiochemistrychemistryConcanavalin AMutationbiology.proteinAdsorptionResearch ArticleJournal of Bacteriology
researchProduct

Effects of yeast proteolytic activity on Oenococcus oeni and malolactic fermentation

2006

International audience; Alcoholic fermentation of synthetic must was performed using either Saccharomyces cerevisiae or a mutant Delta pep4, which is deleted for the proteinase A gene. Fermentation with the mutant Delta pep4 resulted in 61% lower levels of free amino acids, and in 62% lower peptide concentrations at the end of alcoholic fermentation than in the control. Qualitative differences in amino acid composition were observed. Changes observed in amino acids in peptides were mainly quantitative. After alcoholic fermentation each medium was inoculated with Oenococcus oeni. Malolactic fermentation in the medium with the Delta pep4 strain took 10 days longer than the control. This diffe…

Saccharomyces cerevisiae ProteinsNitrogenMalatesWineSaccharomyces cerevisiaeEthanol fermentationMicrobiology03 medical and health sciencesMalate DehydrogenaseProteinase APEP4EndopeptidasesGeneticsMalolactic fermentationLactic acid bacteriaNitrogen metabolismAmino AcidsMolecular Biology030304 developmental biologyOenococcus oenichemistry.chemical_classification0303 health sciencesbiology030306 microbiologyProteolytic enzymesfood and beveragesFree amino nitrogenbiology.organism_classificationYeastYeastAmino acidGram-Positive Cocci[SDV.MP]Life Sciences [q-bio]/Microbiology and ParasitologychemistryBiochemistryFermentationPeptideFermentation
researchProduct

Molecular response of Saccharomyces cerevisiae wine and laboratory strains to high sugar stress conditions.

2010

One of the stress conditions that can affect Saccharomyces cerevisiae cells during their growth is osmotic stress. Under particular environments (for instance, during the production of alcoholic beverages) yeasts have to cope with osmotic stress caused by high sugar concentrations. Although the molecular changes and pathways involved in the response to saline or sorbitol stress are widely understood, less is known about how cells respond to high sugar concentrations. In this work we present a comprehensive study of the response to this form of stress which indicates important transcriptomic changes, especially in terms of the genes involved in both stress response and respiration, and the i…

Saccharomyces cerevisiae ProteinsOsmotic shockProteomeMutantSaccharomyces cerevisiaeWineSaccharomyces cerevisiaeBiologyMicrobiologychemistry.chemical_compoundStress PhysiologicalGene Expression Regulation FungalGene expressionPhosphorylationOligonucleotide Array Sequence AnalysisGene Expression ProfilingRNA FungalGeneral Medicinebiology.organism_classificationYeastGlucosechemistryBiochemistryMolecular ResponseProteomeMutationSorbitolMitogen-Activated Protein KinasesFood ScienceInternational journal of food microbiology
researchProduct

Recruitment of Xrn1 to stress-induced genes allows efficient transcription by controlling RNA polymerase II backtracking

2020

A new paradigm has emerged proposing that the crosstalk between nuclear transcription and cytoplasmic mRNA stability keeps robust mRNA levels in cells under steady-state conditions. A key piece in this crosstalk is the highly conserved 5′–3′ RNA exonuclease Xrn1, which degrades most cytoplasmic mRNAs but also associates with nuclear chromatin to activate transcription by not well-understood mechanisms. Here, we investigated the role of Xrn1 in the transcriptional response of Saccharomyces cerevisiae cells to osmotic stress. We show that a lack of Xrn1 results in much lower transcriptional induction of the upregulated genes but in similar high levels of their transcripts because of parallel …

Saccharomyces cerevisiae ProteinsOsmotic shockTranscription GeneticRNA StabilityRNA polymerase IISaccharomyces cerevisiaeBiology03 medical and health sciences0302 clinical medicineTranscription (biology)Gene Expression Regulation FungalRNA MessengerMolecular BiologyGene030304 developmental biology0303 health sciencesMessenger RNABacktrackingRNA FungalCell BiologyCell biologyCrosstalk (biology)Cytoplasm030220 oncology & carcinogenesisExoribonucleasesbiology.proteinRNA Polymerase IIResearch Paper
researchProduct

Cooperation of Two mRNA-Binding Proteins Drives Metabolic Adaptation to Iron Deficiency

2008

Summary Iron (Fe) is an essential cofactor for a wide range of cellular processes. We have previously demonstrated in yeast that Cth2 is expressed during Fe deficiency and promotes degradation of a battery of mRNAs leading to reprogramming of Fe-dependent metabolism and Fe storage. We report here that the Cth2-homologous protein Cth1 is transiently expressed during Fe deprivation and participates in the response to Fe deficiency through the degradation of mRNAs primarily involved in mitochondrially localized activities including respiration and amino acid biosynthesis. In parallel, wild-type cells, but not cth1 Δ cth2 Δ cells, accumulate mRNAs encoding proteins that function in glucose impo…

Saccharomyces cerevisiae ProteinsPhysiologySaccharomyces cerevisiaeHUMDISEASERNA-binding proteinSaccharomyces cerevisiaeProtein Serine-Threonine KinasesDNA-binding proteinArticlechemistry.chemical_compoundTristetraprolinGlucose importRNA MessengerPhosphorylationProtein kinase AMolecular BiologybiologyGlycogenRNA-Binding ProteinsIron DeficienciesCell BiologyMetabolismbiology.organism_classificationAdaptation PhysiologicalDNA-Binding ProteinsMetabolismBiochemistrychemistryPhosphorylationTranscription FactorsCell Metabolism
researchProduct

Protein Interactions within the Set1 Complex and Their Roles in the Regulation of Histone 3 Lysine 4 Methylation

2006

Set1 is the catalytic subunit and the central component of the evolutionarily conserved Set1 complex (Set1C) that methylates histone 3 lysine 4 (H3K4). Here we have determined protein/protein interactions within the complex and related the substructure to function. The loss of individual Set1C subunits differentially affects Set1 stability, complex integrity, global H3K4 methylation, and distribution of H3K4 methylation along active genes. The complex requires Set1, Swd1, and Swd3 for integrity, and Set1 amount is greatly reduced in the absence of the Swd1-Swd3 heterodimer. Bre2 and Sdc1 also form a heteromeric subunit, which requires the SET domain for interaction with the complex, and Sdc…

Saccharomyces cerevisiae ProteinsProtein subunitLysineRNA polymerase IISaccharomyces cerevisiaeMethylationenvironment and public healthBiochemistryProtein–protein interactionHistonesSerineGene Expression Regulation FungalCoding regionMolecular BiologybiologyLysineHistone-Lysine N-MethyltransferaseCell BiologyMethylationDNA-Binding ProteinsProtein SubunitsHistoneBiochemistrybiology.proteinProtein BindingTranscription FactorsJournal of Biological Chemistry
researchProduct