Search results for "Safranin"

showing 5 items of 5 documents

Genetic abrogation of the fibronectin-α5β1 integrin interaction in articular cartilage aggravates osteoarthritis in mice.

2018

The balance between synthesis and degradation of the cartilage extracellular matrix is severely altered in osteoarthritis, where degradation predominates. One reason for this imbalance is believed to be due to the ligation of the α5β1 integrin, the classic fibronectin (FN) receptor, with soluble FN fragments instead of insoluble FN fibrils, which induces matrix metalloproteinase (MMP) expression. Our objective was to determine whether the lack of α5β1-FN binding influences cartilage morphogenesis in vivo and whether non-ligated α5β1 protects or aggravates the course of osteoarthritis in mice. We engineered mice (Col2a-Cre;Fn1RGE/fl), whose chondrocytes express an α5β1 binding-deficient FN, …

Cartilage ArticularMale0301 basic medicineIntegrinsKnee JointGlycobiologylcsh:MedicineCartilage morphogenesisOsteoarthritisMatrix metalloproteinaseBiochemistryExtracellular matrixMice0302 clinical medicineAnimal CellsMedicine and Health Scienceslcsh:ScienceConnective Tissue CellsStainingMultidisciplinarybiologyChemistryExtracellular MatrixCell biologymedicine.anatomical_structureConnective TissueProteoglycansMatrix Metalloproteinase 3AnatomyCellular Structures and OrganellesCellular TypesResearch ArticleIntegrin alpha5beta1Signal TransductionIntegrinMice TransgenicResearch and Analysis Methods03 medical and health sciencesChondrocytesPhysical Conditioning AnimalMatrix Metalloproteinase 13OsteoarthritisCell AdhesionmedicineAnimalsHumansRegenerationCytoplasmic Staining030203 arthritis & rheumatologyCartilagelcsh:RBiology and Life SciencesProteinsCell Biologymedicine.diseaseFibronectinsFibronectinDisease Models AnimalBiological TissueCartilage030104 developmental biologyProteoglycanSpecimen Preparation and Treatmentbiology.proteinSafranin Staininglcsh:QCollagensArticular CartilagePLoS ONE
researchProduct

Functional Magnetic Mesoporous Silica Microparticles Capped with an Azo-Derivative: A Promising Colon Drug Delivery Device

2018

[EN] Magnetic micro-sized mesoporous silica particles were used for the preparation of a gated material able to release an entrapped cargo in the presence of an azo-reducing agent and, to some extent, at acidic pH. The magnetic mesoporous microparticles were loaded with safranin O and the external surface was functionalized with an azo derivative 1 (bearing a carbamate linkage) yielding solid S1. Aqueous suspensions of S1 at pH 7.4 showed negligible safranin O release due to the presence of the bulky azo derivative attached onto the external surface of the inorganic scaffold. However, in the presence of sodium dithionite (azoreductive agent), a remarkable safranin O delivery was observed. A…

Pharmaceutical Science02 engineering and technologyFerric Compounds01 natural sciencesazo reductorcolon releaseAnalytical ChemistrySodium dithionitechemistry.chemical_compoundQUIMICA ORGANICADrug DiscoveryMoietymagnetic mesoporous silicaDrug CarriersAqueous solutionHydrolysisHydrogen-Ion ConcentrationSilicon Dioxide021001 nanoscience & nanotechnologyControlled releaseMicrospheresChemistry (miscellaneous)Drug deliveryMolecular Medicine0210 nano-technologyOxidation-ReductionPorosityColonSurface Properties010402 general chemistryArticleMagneticsChloridesSafraninQUIMICA ANALITICAHumansFerrous CompoundsPhysical and Theoretical Chemistrymagnetic mesoporous silica; azo derivatives; pH triggered; azo reductor; colon releaseQUIMICA INORGANICAOrganic ChemistryDithioniteMesoporous silica0104 chemical sciencesDrug LiberationchemistryNanoparticlesPhenazinespH triggeredMesoporous materialAzo Compoundsazo derivativesNuclear chemistryMolecules; Volume 23; Issue 2; Pages: 375
researchProduct

Harnessing Molecular Fluorophores in the Carbon Dots Matrix: The Case of Safranin O

2022

The origin of fluorescence in carbon dots (C-dots) is still a puzzling phenomenon. The emission is, in most of the cases, due to molecular fluorophores formed in situ during the synthesis. The carbonization during C-dots processing does not allow, however, a fine control of the properties and makes finding the source of the fluorescence a challenging task. In this work, we present a strategy to embed a pre-formed fluorescent molecule, safranin O dye, into an amorphous carbonaceous dot obtained by citric acid carbonization. The dye is introduced in the melted solution of citric acid and after pyrolysis remains incorporated in a carbonaceous matrix to form red-emitting C-dots that are strongl…

safranincarbon dots; safranin; phosphors; nanoparticlesGeneral Chemical Engineeringcarbon dotsSettore FIS/01 - Fisica Sperimentalecarbon dots; nanoparticles; phosphors; safraninGeneral Materials Sciencenanoparticlesphosphors
researchProduct

Mesoporous silica microparticles gated with a bulky azo derivative for the controlled release of dyes/drugs in colon.

2018

[EN] Mesoporous silica microparticles were prepared, loaded with the dye safranin O (M-Saf) or with the drug budesonide (M-Bud) and capped by the grafting of a bulky azo derivative. Cargo release from M-Saf at different pH values (mimicking those found in the gastrointestinal tract) in the absence or presence of sodium dithionite (a reducing agent mimicking azoreductase enzyme present in the colon) was tested. Negligible safranin O release was observed at pH 6.8 and 4.5, whereas a moderate delivery at pH 1.2 was noted and attributed to the hydrolysis of the urea bond that linked the azo derivative onto the external surface of the inorganic scaffold. Moreover, a marked release was observed w…

genetic structuresReducing agent02 engineering and technology010402 general chemistryMesoporous silica microparticlesColon targeting01 natural sciencesHigh-performance liquid chromatographyInflammatory bowel diseaseSodium dithionitechemistry.chemical_compoundHydrolysisQUIMICA ORGANICASafraninQUIMICA ANALITICAGated materialslcsh:ScienceBudesonideControlled drug releaseMultidisciplinaryQUIMICA INORGANICAMesoporous silica021001 nanoscience & nanotechnologyControlled release0104 chemical scienceschemistryUrealcsh:Q0210 nano-technologyNuclear chemistryRoyal Society open science
researchProduct

Finely Tuned Temperature-Controlled Cargo Release Using Paraffin-Capped Mesoporous Silica Nanoparticles

2011

[EN] Trapped: Mesoporous silica nanoparticles were loaded with a fluorescent guest and functionalized with octadecyltrimethoxysilane. The alkyl chains interact with paraffins, which build a hydrophobic layer around the particle (see picture). Upon melting of the paraffin, the guest molecule is released, as demonstrated in cells for the guest doxorubicin. The release temperature can be tuned by choosing an appropriate paraffin. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Models MolecularINGENIERIA DE LA CONSTRUCCIONGuest moleculesParaffinsParaffin waxesNanoparticlemesoporous materialsMCM-41Phenazine derivativeFunctionalizedCell survivalNanoparticleQUIMICA ORGANICAChemical structureX-Ray DiffractionSafranin tSilicon dioxideControlled releaseAlkyl chainDrug CarriersMicroscopy ConfocalMolecular StructureOctadecyltrimethoxysilaneSurface propertyTemperatureSilicaGeneral MedicineChemistryAntineoplastic agentParaffinHeLa cellPorosityHumanMaterials scienceDrug carrierX ray diffractionSurface PropertiesMesoporous silica nanoparticlesNanotechnologyAntineoplastic AgentsMesoporousCatalysisDrug interactionsArticleMicroscopy Electron TransmissionHumansCell survivalDrug effectDelayed release formulationHydrophobic layersQUIMICA INORGANICAGeneral ChemistryMesoporous silicaMolecular gatesMesoporous materialsMcm 41Confocal microscopyDrug effectSolubilityDoxorubicinDelayed-Action Preparationsdrug deliveryDrug deliveryNanoparticlesPhenazinesnanoparticlesMesoporous materialcontrolled releasemolecular gatesTransmission electron microscopyHeLa CellsAngewandte Chemie
researchProduct