Search results for "Salt"

showing 10 items of 1157 documents

Unraveling Salt Tolerance in Halophytes: A Comparative Study on Four Mediterranean Limonium Species with Different Geographic Distribution Patterns

2017

[EN] We have performed an extensive study on the responses to salt stress in four related Limonium halophytes with different geographic distribution patterns, during seed germination and early vegetative growth. The aims of the work were twofold: to establish the basis for the different chorology of these species, and to identify relevant mechanisms of salt tolerance dependent on the control of ion transport and osmolyte accumulation. Seeds were germinated in vitro, in the presence of increasing NaCl concentrations, and subjected to ¿recovery of germination¿ tests; germination percentages and velocity were determined to establish the relative tolerance and competitiveness of the four Limoni…

0106 biological sciences0301 basic medicineSalt marshVegetative reproductionLimoniumSalt stressBOTANICAPlant ScienceBiologylcsh:Plant culture01 natural sciences03 medical and health sciencesHalophyteBotanyBIOQUIMICA Y BIOLOGIA MOLECULARClimate changelcsh:SB1-1110Original ResearchIon transportSalt glandgeographygeography.geographical_feature_categorySalt glandsbiology.organism_classificationSeed germinationSalinity toleranceSalinity030104 developmental biologyOsmolytesOsmolyteGerminationSalt marsh010606 plant biology & botany
researchProduct

ß-COP mutants show specific high sensitivity to chloride ions.

2021

Coat Protein I (COPI) consists of a complex (coatomer) formed by seven subunits (α-, β-, β’-, γ-, δ-, ε-, and ζ-COP) that is recruited to Golgi membranes to form vesicles that shuttle from the Golgi apparatus to the ER and between Golgi stacks. Recently, it has been described that loss of function mutants of the two Arabidopsis β-COP genes, β1-COP and β2-COP, showed increased sensitivity to salt stress (NaCl). Using a mixture of either Na(+) or Cl(−) salts, we have now found that β-COP mutants are specifically and highly sensitive to chloride ions.

0106 biological sciences0301 basic medicineShort CommunicationMutantArabidopsisSalt (chemistry)Plant ScienceBiology01 natural sciencesChlorideCoatomer Protein03 medical and health sciencessymbols.namesakeChloridesArabidopsismedicinechemistry.chemical_classificationIonsVesicleCOPIGolgi apparatusbiology.organism_classificationhumanitiesProtein Subunits030104 developmental biologyPhenotypechemistryCoatomerMutationsymbolsBiophysics010606 plant biology & botanymedicine.drugProtein BindingPlant signalingbehavior
researchProduct

Influence of salt of different origin on the microbiological characteristics, histamine generation and volatile profile of salted anchovies (Engrauli…

2018

Abstract The effect of six salts of different geographical areas on the quality of salted anchovies was evaluated. The crude salts were chemically characterized by determination of inorganic and volatile organic compounds (VOCs). Salted anchovies, corresponding to six experimental trials, were subjected to microbiological, chemical (including histamine content) and sensory analysis during the entire period of ripening (150 days). The salts were characterized by marked differences in terms of major cations and trace element amounts. Among the 27 VOCs detected, octadecane was the most abundant compound and the main differences of the salts were registered for alkanes and alcohols. During matu…

0106 biological sciences0301 basic medicineTasteSaltSettore AGR/13 - Chimica Agraria030106 microbiologySalt (chemistry)01 natural sciencesSensory analysis03 medical and health scienceschemistry.chemical_compoundEngraulis010608 biotechnologyAnchovieFood scienceSettore BIO/06 - Anatomia Comparata E CitologiaStaphylococcaceaechemistry.chemical_classificationbiologyChemistryVOCRipeningbiology.organism_classificationLactic acidComposition (visual arts)Bacterial communityHistamineSettore AGR/16 - Microbiologia AgrariaFood ScienceBiotechnologyFood Control
researchProduct

Polyamine Oxidase 5 loss-of-function mutations in Arabidopsis thaliana trigger metabolic and transcriptional reprogramming and promote salt stress to…

2017

The family of polyamine oxidases (PAO) in Arabidopsis (AtPAO1-5) mediates polyamine (PA) back-conversion, which reverses the PA biosynthetic pathway from spermine, and its structural isomer thermospermine (tSpm), into spermidine and then putrescine. Here, we have studied the involvement of PA back-conversion in Arabidopsis salinity tolerance. AtPAO5 is the Arabidopsis PAO gene member most transcriptionally induced by salt stress. Two independent loss-of-function mutants (atpao5-2 and atpao5-3) were found to exhibit constitutively higher tSpm levels, with associated increased salt tolerance. Using global transcriptional and metabolomic analyses, the underlying mechanisms were studied. Stimul…

0106 biological sciences0301 basic medicineTranscription GeneticArabidopsis thalianaPhysiologyArabidopsisSperminePlant ScienceSodium Chloride01 natural scienceschemistry.chemical_compoundGene Expression Regulation PlantLoss of Function MutationArabidopsisPolyaminesMetabolitesArabidopsis thalianaPoliaminesAbscisic acidPrincipal Component AnalysisbiologyAgricultural SciencesSalt ToleranceMetabòlitsmetabolomicsPhenotypeBiochemistryMultigene FamilyMetabolomeCitric Acid CycleSalsCyclopentanes03 medical and health sciencesStress PhysiologicalOxylipinsRNA MessengerIonssalt toleranceArabidopsis ProteinsGene Expression ProfilingSodiumHydrogen PeroxideAgriculture Forestry and Fisheriesbiology.organism_classificationSpermidineGene Ontology030104 developmental biologychemistrythermosperminePutrescineSpermineSaltsOxidoreductases Acting on CH-NH2 Group DonorsTranscriptomejasmonatesPolyaminePolyamine oxidaseAbscisic Acid010606 plant biology & botany
researchProduct

Spermine Confers Stress Resilience by Modulating Abscisic Acid Biosynthesis and Stress Responses in Arabidopsis Plants

2019

Polyamines (PAs) constitute a group of low molecular weight aliphatic amines that have been implicated as key players in growth and development processes, as well as in the response to biotic and abiotic stresses. Transgenic plants overexpressing PA-biosynthetic genes show increased tolerance to abiotic stress. Therein, abscisic acid (ABA) is the hormone involved in plant responses to environmental stresses such as drought or high salinity. An increase in the level of free spermine (Spm) in transgenic Arabidopsis plants resulted in increased levels of endogenous ABA and promoted, in a Spm-dependent way, transcription of different ABA inducible genes. This phenotype was only partially revers…

0106 biological sciences0301 basic medicineTransgeneMutantSalt stressStress toleranceSperminePlant ScienceGenetically modified cropslcsh:Plant culture01 natural sciences03 medical and health scienceschemistry.chemical_compoundAbscisic acidArabidopsislcsh:SB1-1110Abscisic acidOriginal ResearchAbiotic componentbiologyAbiotic stressStress responsefungifood and beveragesbiology.organism_classificationCell biology030104 developmental biologychemistrySpermine010606 plant biology & botany
researchProduct

Anthocyanins of Coloured Wheat Genotypes in Specific Response to SalStress

2018

The present study investigated the effect of salt stress on the development of adaptive responses and growth parameters of different coloured wheat genotypes. The different coloured wheat genotypes have revealed variation in the anthocyanin content, which may affect the development of adaptive responses under increasing salinity stress. In the early stage of treatment with salt at a lower NaCl concentration (100 mM), anthocyanins and proline accumulate, which shows rapid development of the stress reaction. A dose-dependent increase in flavonol content was observed for wheat genotypes with more intense purple-blue pigmentation after treatment with 150 mM and 200 mM NaCl. The content of Na⁺ a…

0106 biological sciences0301 basic medicineflavonolMDAColorPharmaceutical ScienceSodium Chloride01 natural sciencesArticleSalinity stressAnalytical Chemistrysalinitylcsh:QD241-44103 medical and health scienceschemistry.chemical_compoundlcsh:Organic chemistryDry weightStress PhysiologicalwheatDrug DiscoveryGenotypeDry matterProlinePhysical and Theoretical ChemistryprolineTriticumPigmentationChemistryOrganic Chemistryfood and beveragesSalt ToleranceanthocyaninsSalinityHorticulture030104 developmental biologyChemistry (miscellaneous)AnthocyaninMolecular MedicineAfter treatment010606 plant biology & botanyMolecules
researchProduct

Epigenetic and Genetic Contributions to Adaptation in Chlamydomonas

2017

Epigenetic modifications, such as DNA methylation or histone modifications, can be transmitted between cellular or organismal generations. However, there are no experiments measuring their role in adaptation, so here we use experimental evolution to investigate how epigenetic variation can contribute to adaptation. We manipulated DNA methylation and histone acetylation in the unicellular green alga Chlamydomonas reinhardtii both genetically and chemically to change the amount of epigenetic variation generated or transmitted in adapting populations in three different environments (salt stress, phosphate starvation, and high CO2) for two hundred asexual generations. We find that reducing the …

0106 biological sciences0301 basic medicinehiilidioksidiEpigenomicsAdaptation Biological01 natural sciencestolerance (physical)Epigenesis GeneticEpigenomicssietokyky2. Zero hungerGeneticsExperimental evolutionepigeneettinen periytyminenSalt Tolerancegreen algaeAdaptation PhysiologicalHistoneDNA methylationepigenetic inheritancephosphate starvationBiologyEnvironment010603 evolutionary biologysuolapitoisuus03 medical and health sciencesviherlevätGenetic variationGeneticsEpigeneticssalt contentexperimental evolutionravinnepitoisuusMolecular BiologyGeneEcology Evolution Behavior and Systematicssalt tolerancefosfaatitta1183ChlamydomonasGenetic Variationadaptive walkcarbon dioxideDNA Methylation030104 developmental biologyepigenetic mutationMutationbiology.proteinta1181methylationAdaptationDirected Molecular EvolutionChlamydomonas reinhardtii
researchProduct

Hydroperiod length as key parameter controlling seed strategies in Mediterranean salt marshes: The case of Halopeplis amplexicaulis

2018

Abstract The comprehension of plant biology and the response to the environment is fundamental to achieve the optimal skills to manage and conserve the fine equilibrium between biotic and abiotic parameters regulating natural biodiversity in salt marshes. The behaviour of annuals living in these stressful conditions is poorly understood and constitutes a good model for a better understanding of this relationship. We thus identified the determinant environmental factors involved in population survival of Halopeplis amplexicaulis, a threatened annual species inhabiting salt marshes. To achieve this objective, maternal climatic parameters were analyzed in seeds collected in different years, an…

0106 biological sciencesAbiotic componenteducation.field_of_studygeographygeography.geographical_feature_categoryMarshEcologyEcologyPopulationSeed dormancyBiodiversityfood and beveragesPlant ScienceBiology010603 evolutionary biology01 natural sciencesGerminationSalt marshDormancyeducationEcology Evolution Behavior and Systematics010606 plant biology & botanyFlora
researchProduct

Plant-Based Protein Hydrolysate Improves Salinity Tolerance in Hemp: Agronomical and Physiological Aspects

2021

Hemp (Cannabis sativa L.) is a multipurpose plant attracting increasing interest as a source for the production of natural fibers, paper, bio-building material and food. In this research we studied the agronomical performance of Cannabis sativa cv. Eletta Campana irrigated with saline water. Under those conditions, we tested the effect of protein hydrolysate (PH) biostimulant application in overcoming and/or balancing deleterious salinity effects. The results of the diverse treatments were also investigated at the physiological level, focusing on photosynthesis by means of a chlorophyll a fluorescence technique, which give an insight into the plant primary photochemical reactions. Four sali…

0106 biological sciencesChlorophyll aIrrigationhemp; salt stress; biostimulants; seeds yield; chlorophyll fluorescencePhotosynthesis01 natural sciencesHydrolysatelcsh:AgricultureCropchemistry.chemical_compoundSalt streChlorophyll fluorescencesalt stresslcsh:Sfood and beverages04 agricultural and veterinary sciencesSeeds yieldSaline waterBiostimulantSalinitybiostimulantsHorticulturechemistry040103 agronomy & agriculture0401 agriculture forestry and fisheriesChlorophyll fluorescenceHempAgronomy and Crop Science010606 plant biology & botanyAgronomy
researchProduct

Combination of Freezing, Low Sodium Brine and Cold Smoking on the Quality and Shelf-Life of Sea Bass (Dicentrarchus labrax L.) Fillets as a Strategy …

2021

Aquaculture is playing a leading role in both meeting the growing demand for seafood and increasing the sustainability of the fish production sector. Thus, innovative technologies that improve its sustainability, competitiveness, and safety are necessary for growth in the sector. This study aimed to develop cold smoked sea bass fillets from aquaculture. The aptitude of frozen and fresh fillets for cold smoking was investigated by processing both fresh and thawed fillets kept previously at &minus

0106 biological sciencesFish farmingFood spoilagefilletsShelf life01 natural scienceslow-salt productArticle0404 agricultural biotechnologyBriningAquacultureSettore AGR/20 - Zoocolture010608 biotechnologylcsh:ZoologyFood sciencesodium replacementlcsh:QL1-991Sea bassSettore BIO/06 - Anatomia Comparata E Citologialcsh:Veterinary medicineGeneral Veterinarybiology<i>Dicentrachus labrax</i>business.industryDicentrachus labraxfish quality04 agricultural and veterinary sciencesbiology.organism_classification040401 food scienceshelf-lifeaquacultureEnvironmental sciencelcsh:SF600-1100Animal Science and ZoologyDicentrarchusbusinessLow sodiumcold smokingAnimals
researchProduct