Search results for "Scaffolds"

showing 10 items of 208 documents

Integration of PCL and PLA in a monolithic porous scaffold for interface tissue engineering.

2016

A novel bi-layered multiphasic scaffold (BLS) have been fabricated for the first time by combining melt mixing, compression molding and particulate leaching. One layer has been composed by polylactic acid (PLA) presenting pore size in the range of 90-110µm while the other layer has been made of polycaprolactone (PCL) with pores ranging from 5 to 40µm. The different chemo-physical properties of the two biopolymers combined with the tunable pore architecture permitted to realize monolithic functionally graded scaffolds engineered to be potentially used for interface tissues regenerations. BLS have been characterized from a morphological and a mechanical point of view. In particular, mechanica…

ScaffoldMaterials scienceParticulate leachingPolyestersBiomedical EngineeringCompression molding02 engineering and technology010402 general chemistry01 natural sciencesBiomaterialschemistry.chemical_compoundMicePolylactic acidTissue engineeringChemical gradientMelt mixingSettore BIO/10 - BiochimicaElastic ModulusAnimalsComposite materialPorosityElastic modulusCells CulturedOsteoblastsTissue EngineeringTissue ScaffoldsInterface tissue engineeringPore size gradientSettore ING-IND/34 - Bioingegneria IndustrialeFunctionally graded scaffoldFibroblasts021001 nanoscience & nanotechnologyCoculture Techniques0104 chemical sciencesPolyesterSettore ING-IND/22 - Scienza E Tecnologia Dei MaterialichemistryMechanics of MaterialsPolycaprolactoneNIH 3T3 Cells0210 nano-technologyPorosityJournal of the mechanical behavior of biomedical materials
researchProduct

Electrospun Polyhydroxyethyl-Aspartamide-Polylactic Acid Scaffold for Biliary Duct Repair: A Preliminary In Vivo Evaluation

2017

Abstract Tissue engineering has emerged as a new approach with the potential to overcome the limitations of traditional therapies. The objective of this study was to test whether our polymeric scaffold is able to resist the corrosive action of bile and to support a cell's infiltration and neoangiogenesis with the aim of using it as a biodegradable tissue substitute for serious bile duct injuries. In particular, a resorbable electrospun polyhydroxyethyl-aspartamide–polylactic acid (90 mol% PHEA, 10 mol% PLA)/polycaprolactone (50:50 w/w) plate scaffold was implanted into rabbit gallbladder to assess the in vivo effects of the lytic action of the bile on the scaffold structure and then as a tu…

ScaffoldMaterials sciencePolyesters03 medical and health scienceschemistry.chemical_compound0302 clinical medicineBioabsorbable scaffold Bioengineered biliary duct Experimental surgeryTissue engineeringPolylactic acidIn vivomedicineAnimalsTransplantationTissue EngineeringTissue ScaffoldsBile ductGallbladderBiliary Tract Surgical ProceduresSettore MED/18 - Chirurgia Generalemedicine.anatomical_structurechemistryBiliary tractSettore CHIM/09 - Farmaceutico Tecnologico Applicativo030220 oncology & carcinogenesisPolycaprolactone030211 gastroenterology & hepatologySurgeryBile DuctsRabbitsBiomedical engineering
researchProduct

Modulation of physical and biological properties of a composite PLLA and polyaspartamide derivative obtained via thermally induced phase separation (…

2016

Abstract In the present study, blend of poly l -lactic acid (PLLA) with a graft copolymer based on α,β-poly(N-hydroxyethyl)- dl -aspartamide and PLA named PHEA-PLA, has been used to design porous scaffold by using Thermally Induced Phase Separation (TIPS) technique. Starting from a homogeneous ternary solution of polymers, dioxane and deionised water, PLLA/PHEA-PLA porous foams have been produced by varying the polymers concentration and de-mixing temperature in metastable region. Results have shown that scaffolds prepared with a polymer concentration of 4% and de-mixing temperature of 22.5 °C are the best among those assessed, due to their optimal pore size and interconnection. SEM and DSC…

ScaffoldMaterials sciencePolyestersComposite numberBioengineering02 engineering and technologyCondensed Matter Physic010402 general chemistry01 natural sciencesChondrocytes attachmentlaw.inventionChondrocytes attachment; Composite biomaterials; TIPS; Materials Science (all); Condensed Matter Physics; Mechanical Engineering; Mechanics of MaterialsBiomaterialsHydrolysisChondrocytesstomatognathic systemlawMaterials TestingCopolymerAnimalsCrystallizationComposite materialCells Culturedchemistry.chemical_classificationTissue ScaffoldsMechanical EngineeringExtraction (chemistry)technology industry and agriculturePolymerAdhesionequipment and supplies021001 nanoscience & nanotechnology0104 chemical scienceschemistryChemical engineeringMechanics of MaterialsTIPSlipids (amino acids peptides and proteins)CattleMaterials Science (all)Composite biomaterial0210 nano-technologyPeptidesMaterials scienceengineering. C, Materials for biological applications
researchProduct

Polylactide-based materials science strategies to improve tissue-material interface without the use of growth factors or other biological molecules

2018

In a large number of medical devices, a key feature of a biomaterial is the ability to successfully bond to living tissues by means of engineered mechanisms such as the enhancement of biomineralization on a bone tissue engineering scaffold or the mimicking of the natural structure of the extracellular matrix (ECM). This ability is commonly referred to as "bioactivity". Materials sciences started to grow interest in it since the development of bioactive glasses by Larry Hench five decades ago. As the main goal in applications of biomedical devices and tissue scaffolds is to obtain a seamless tissue-material interface, achieving optimal bioactivity is essential for the success of most biomate…

ScaffoldMaterials sciencePolyestersInterface (computing)Materials SciencePolyesterCompositeBioengineeringNanotechnologyCondensed Matter Physic02 engineering and technology010402 general chemistryBioactivity01 natural sciencesPolylactic acidBone tissue engineeringScaffoldBiomaterialsTissue ScaffoldTissue engineeringIntercellular Signaling Peptides and ProteinAnimalsHumansMechanics of Materialchemistry.chemical_classificationTissue ScaffoldsTissue EngineeringAnimalMechanical EngineeringBiomoleculeBiomedical polymersBiomaterialExtracellular matrix021001 nanoscience & nanotechnology0104 chemical scienceschemistryMechanics of MaterialsIntercellular Signaling Peptides and ProteinsTissue materialMaterials Science (all)0210 nano-technologyTissue-material interfaceHumanMaterials Science and Engineering: C
researchProduct

Characterization of the complete fiber network topology of planar fibrous tissues and scaffolds

2010

Understanding how engineered tissue scaffold architecture affects cell morphology, metabolism, phenotypic expression, as well as predicting material mechanical behavior has recently received increased attention. In the present study, an image-based analysis approach that provides an automated tool to characterize engineered tissue fiber network topology is presented. Micro-architectural features that fully defined fiber network topology were detected and quantified, which include fiber orientation, connectivity, intersection spatial density, and diameter. Algorithm performance was tested using scanning electron microscopy (SEM) images of electrospun poly(ester urethane)urea (ES-PEUU) scaffo…

ScaffoldMaterials sciencePolyestersPolyurethanesBiophysicsBioengineeringTopology (electrical circuits)TopologyCell morphologyArticleBiomaterialsTissue engineeringMicroscopyAnimalsHumansFiberDecellularizationTissue EngineeringTissue ScaffoldsPhantoms ImagingMesenchymal Stem CellsElectrospinningRatsMechanics of MaterialsMicroscopy Electron ScanningCeramics and CompositesCollagenRabbitsGelsAlgorithmsBiomedical engineeringImage analysisScaffold morphologyMicrostructureElectrospinningCollagen gelDecellularized tissue
researchProduct

Polybutylene succinate artificial scaffold for peripheral nerve regeneration

2021

Regeneration and recovery of nerve tissues are a great challenge for medicine, and positively affect the quality of life of patients. The development of tissue engineering offers a new approach to the problem with the creation of multifunctional artificial scaffolds that act on various levels in the damaged tissue, providing physical and biochemical support for the growth of nerve cells. In this study, the effects of the use of a tubular scaffold made of polybutylene succinate (PBS), surgically positioned at the level of a sciatic nerve injured in rat, between the proximal stump and the distal one, was investigated. Scaffolds characterization was carried out by scanning electron microscopy …

ScaffoldMaterials sciencePolymersBiomedical EngineeringContext (language use)02 engineering and technologyRats Sprague-DawleyBiomaterials03 medical and health sciencesTissue engineeringIn vivoElectroneuronographyAnimalsHumansButylene Glycols030304 developmental biology0303 health sciencesTissue ScaffoldsbiologyRegeneration (biology)X-Ray Microtomography021001 nanoscience & nanotechnologySciatic Nervenerve regeneration electrospinning poly(14-butylene succinate) (PBS) artificial conduits sciatic nerveNerve RegenerationRatsQuality of Lifebiology.proteinSciatic nerve0210 nano-technologyBiomedical engineeringNeurotrophinJournal of Biomedical Materials Research Part B: Applied Biomaterials
researchProduct

Photocrosslinkable polyaspartamide/polylactide copolymer and its porous scaffolds for chondrocytes

2017

With the aim to produce, by a simple and reproducible technique, porous scaffolds potentially employable for tissue engineering purposes, in this work, we have synthesized a methacrylate (MA) copolymer of α,β-poly(N-2-hydroxyethyl)-dl-aspartamide (PHEA) and polylactic acid (PLA). PHEA-PLA-MA has been dissolved in organic solvent at different concentrations in the presence of NaCl particles with different granulometry, and through UV irradiation and further salt leaching technique, various porous scaffolds have been prepared. Obtained samples have been characterized by scanning electron microscopy and their porosity has been evaluated as well as their degradation profile in aqueous medium in…

ScaffoldMaterials scienceSwineScanning electron microscopePolyestersBioengineering02 engineering and technology010402 general chemistryMethacrylate01 natural sciencesCartilage regeneration; Photocrosslinking; Porous scaffolds; αβ-poly(N-2-hydroxyethyl)-DL-aspartamideBiomaterialschemistry.chemical_compoundChondrocytesPorous scaffoldTissue engineeringPolylactic acidPolymer chemistryCopolymerAnimalsPorosityPhotocrosslinkingαβ-poly(N-2-hydroxyethyl)-DL-aspartamideTissue EngineeringTissue Scaffoldstechnology industry and agriculturePhotochemical Processes021001 nanoscience & nanotechnology0104 chemical sciencesCross-Linking ReagentschemistryChemical engineeringCartilage regenerationSettore CHIM/09 - Farmaceutico Tecnologico ApplicativoMechanics of MaterialsCattleLeaching (metallurgy)0210 nano-technologyPorosityMaterials Science and Engineering: C
researchProduct

3D polylactide-based scaffolds for studying human hepatocarcinoma processes in vitro

2012

We evaluated the combination of leaching techniques and melt blending of polymers and particles for the preparation of highly interconnected three-dimensional polymeric porous scaffolds for in vitro studies of human hepatocarcinoma processes. More specifically, sodium chloride and poly(ethylene glycol) (PEG) were used as water-soluble porogens to form porous and solvent-free poly(L,D-lactide) (PLA)-based scaffolds. Several characterization techniques, including porosimetry, image analysis and thermogravimetry, were combined to improve the reliability of measurements and mapping of the size, distribution and microarchitecture of pores. We also investigated the effect of processing, in PLA-ba…

ScaffoldMaterials sciencelcsh:Biotechnology0206 medical engineering02 engineering and technologychemistry.chemical_compoundlcsh:TP248.13-248.65Settore BIO/10 - BiochimicaPEG ratiolcsh:TA401-492General Materials ScienceViability assayComposite materialCell adhesionpolymeric porous scaffolds PLA-PEG BASED SCAFFOLDS SKHep1 cellchemistry.chemical_classificationtechnology industry and agriculturePorosimetryPolymerArticles021001 nanoscience & nanotechnology020601 biomedical engineeringThermogravimetrychemistryChemical engineeringlcsh:Materials of engineering and construction. Mechanics of materials0210 nano-technologyEthylene glycol
researchProduct

Improving vascularization of engineered bone through the generation of pro-angiogenic effects in co-culture systems

2014

One of the major problems with bone tissue engineering is the development of a rapid vascularization after implantation to supply the growing osteoblast cells with the nutrients to grow and survive as well as to remove waste products. It has been demonstrated that capillary-like structures produced in vitro will anastomose rapidly after implantation and become functioning blood vessels. For this reason, in recent years many studies have examined a variety of human osteoblast and endothelial cell co-culture systems in order to distribute osteoblasts on all parts of the bone scaffold and at the same time provide conditions for the endothelial cells to migrate to form a network of capillary-li…

ScaffoldOsteoblastsTissue EngineeringTissue ScaffoldsAngiogenesisEndothelial CellsNeovascularization PhysiologicPharmaceutical ScienceBone scaffoldOsteoblastBiologyCoculture TechniquesIn vitroBone tissue engineeringCell biologyEndothelial stem cellmedicine.anatomical_structureOsteogenesisImmunologymedicineHumansCell ProliferationEndothelial Progenitor CellsAdvanced Drug Delivery Reviews
researchProduct

Preparation and characterization of a biologic scaffold from esophageal mucosa

2013

Biologic scaffolds composed of extracellular matrix (ECM) are commonly used to facilitate a constructive remodeling response in several types of tissue, including the esophagus. Surgical manipulation of the esophagus is often complicated by stricture, but preclinical and clinical studies have shown that the use of an ECM scaffold can mitigate stricture and promote a constructive outcome after resection of full circumference esophageal mucosa. Recognizing the potential benefits of ECM derived from homologous tissue (i.e., site-specific ECM), the objective of the present study was to prepare, characterize, and assess the in-vivo remodeling properties of ECM from porcine esophageal mucosa. The…

ScaffoldPathologymedicine.medical_specialtySwineBiophysicsBioengineeringArticleBiomaterialsExtracellular matrixECM (extracellular matrix) Decellularization Scaffold Immune responseEsophagusTissue engineeringMaterials TestingmedicineAnimalsEsophagusCells CulturedBasement membraneDecellularizationMucous MembraneTissue EngineeringTissue Scaffoldsbusiness.industrySoft tissueExtracellular MatrixRatsmedicine.anatomical_structureMechanics of MaterialsCeramics and CompositesMicroscopy Electron ScanningStem cellbusiness
researchProduct