Search results for "Scintillation"

showing 10 items of 145 documents

First results on ProtoDUNE-SP liquid argon time projection chamber performance from a beam test at the CERN Neutrino Platform

2020

The ProtoDUNE-SP detector was constructed and operated on the CERN Neutrino Platform. We thank the CERN management for providing the infrastructure for this experiment and gratefully acknowledge the support of the CERN EP, BE, TE, EN, IT and IPT Departments for NP04/ProtoDUNE-SP. This documentwas prepared by theDUNEcollaboration using the resources of the Fermi National Accelerator Laboratory (Fermilab), a U.S. Department of Energy, Office of Science, HEP User Facility. Fermilab is managed by Fermi Research Alliance, LLC (FRA), acting under Contract No. DE-AC02-07CH11359. This work was supported by CNPq, FAPERJ, FAPEG and FAPESP, Brazil; CFI, IPP and NSERC, Canada; CERN; MSMT, Czech Republi…

TechnologyHIGH-ENERGYPhysics - Instrumentation and DetectorsPhysics::Instrumentation and Detectorsfar detectorbeam transportNoble liquid detectors (scintillation ionization double-phase)Cms Experıment01 natural sciences7. Clean energy09 EngineeringParticle identificationHigh Energy Physics - Experiment030218 nuclear medicine & medical imagingHigh Energy Physics - Experiment (hep-ex)0302 clinical medicineNoble liquid detectors (scintillationDetectors and Experimental TechniquesInstrumentationInstruments & Instrumentationphysics.ins-dettime resolutionMathematical PhysicsPhysics02 Physical SciencesTime projection chamberLarge Hadron ColliderDetectorInstrumentation and Detectors (physics.ins-det)double-phase)Nuclear & Particles PhysicsLIGHTNeutrinoParticle Physics - ExperimentperformanceNoble liquid detectors(scintillation ionization double-phase)noiseCERN LabLarge detector systems for particle and astroparticle physics Noble liquid detectors (scintillation ionization double-phase) Time projection Chambers (TPC)530 Physicsenergy lossTime projection chambersFOS: Physical sciencesParticle detectorNuclear physics03 medical and health sciencesneutrino: deep underground detector0103 physical sciencesionizationDeep Underground Neutrino ExperimentHigh Energy Physics[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]signal processingactivity reportScience & Technology010308 nuclear & particles physicshep-exLarge detector systems for particle and astroparticle physicsTime projection Chambers (TPC)530 Physiksensitivitycalibrationtime projection chamber: liquid argonExperimental High Energy PhysicsLarge detector systems for particle and astroparticle physicsingle-phase)Large detector systems for particle and astroparticle physics; Noble liquid detectors (scintillation ionization double-phase); Time projection Chambers (TPC)High Energy Physics::Experimentphoton: detectorparticle identificationcharged particle: irradiationBeam (structure)
researchProduct

Indoor free space optics link under the weak turbulence regime: Measurements and model validation

2015

In this study, the authors present the measurements performed on a free space optics (FSO) communications link using an indoor atmospheric chamber. In particular, the authors have generated several different optical turbulence conditions, demonstrating how even the weak turbulence regime can strongly affect the FSO link performance. The authors have carried out an in-depth analysis of the data collected during the measurements, and calculated the turbulence strength (i.e. scintillation index and Rytov variance) and the important performance metrics (i.e. the Q-factor and bit error rate) to evaluate the FSO link quality. Moreover, the authors have tested, for the first time, an appositely de…

Time seriesComputer scienceOptical linksIrradianceGamma gamma channel modelSettore ING-INF/01 - ElettronicaScintillation indexoptical turbulenceQuality (physics)TEORIA DE LA SEÑAL Y COMUNICACIONESStatistical physicsError statisticsElectrical and Electronic EngineeringComunicació i tecnologiaScintillationtime-correlated channel modelbusiness.industryTurbulenceSettore ING-INF/03 - TelecomunicazioniIndoor atmospheric chamberRytov varianceAtmospheric turbulenceExperimental dataQ-factorTurbulence strengthSettore ING-INF/02 - Campi ElettromagneticiÒpticaComputer Science ApplicationsBit error rateQ factorFree Space OpticBit error rateGamma-Gamma modelIndoor free space optics communications linkTelecommunicationsbusinessFree-space optical communicationindoor link
researchProduct

The 30 Year Search for the Compact Object in SN 1987A

2018

Despite more than 30 years of searches, the compact object in Supernova (SN) 1987A has not yet been detected. We present new limits on the compact object in SN 1987A using millimeter, near-infrared, optical, ultraviolet, and X-ray observations from ALMA, VLT, HST, and Chandra. The limits are approximately 0.1 mJy ($0.1\times 10^{-26}$ erg s$^{-1}$ cm$^{-2}$ Hz$^{-1}$) at 213 GHz, 1 Lsun ($6\times 10^{-29}$ erg s$^{-1}$ cm$^{-2}$ Hz$^{-1}$) in optical if our line-of-sight is free of ejecta dust, and $10^{36}$ erg s$^{-1}$ ($2\times 10^{-30}$ erg s$^{-1}$ cm$^{-2}$ Hz$^{-1}$) in 2-10 keV X-rays. Our X-ray limits are an order of magnitude less constraining than previous limits because we use a…

[ PHYS.ASTR ] Physics [physics]/Astrophysics [astro-ph]AstrophysicsPhysical Chemistry01 natural sciences7. Clean energyAtomicLuminosityParticle and Plasma PhysicsQB460Astrophysics::Solar and Stellar AstrophysicsAbsorption (logic)10. No inequality010303 astronomy & astrophysicsQBHigh Energy Astrophysical Phenomena (astro-ph.HE)Physicsastro-ph.HEAccretion (meteorology)SUPERNOVA REMNANT 1987ASupernovaAstrophysics - High Energy Astrophysical PhenomenaAstronomical and Space SciencesPhysical Chemistry (incl. Structural)NEUTRON-STARSCIRCUMSTELLAR RINGX-RAYSAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesBLUE SUPERGIANTSAstrophysics::Cosmology and Extragalactic AstrophysicsCompact starAstronomy & Astrophysicsstars: neutronneutron [stars]Pulsarindividual [supernovae]0103 physical sciencesblack holes [stars]NuclearINTEGRAL FIELD SPECTROSCOPY010306 general physicsUNDERGROUND SCINTILLATION TELESCOPEsupernovae: individualAstrophysics::Galaxy AstrophysicsOrganic ChemistryMolecularAstronomy and AstrophysicsHUBBLE-SPACE-TELESCOPEEffective temperatureNeutron starRAY EMISSION-LINESPhysics and Astronomyindividual (SN 1987A) [supernovae]13. Climate actionSpace and Planetary ScienceLARGE-MAGELLANIC-CLOUD[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]stars: black holes
researchProduct

Search for low-energy neutrinos from astrophysical sources with Borexino

2019

We report on searches for neutrinos and antineutrinos from astrophysical sources performed with the Borexino detector at the Laboratori Nazionali del Gran Sasso in Italy. Electron antineutrinos ($\bar{\nu}_e$) are detected in an organic liquid scintillator through the inverse $\beta$-decay reaction. In the present work we set model-independent upper limits in the energy range 1.8-16.8 MeV on neutrino fluxes from unknown sources that improve our previous results, on average, by a factor 2.5. Using the same data set, we first obtain experimental constraints on the diffuse supernova $\bar{\nu}_e$ fluxes in the previously unexplored region below 8 MeV. A search for $\bar{\nu}_e$ in the solar ne…

antineutrinosPhysics - Instrumentation and Detectorssolar flaresmagnetic field: highneutrino: solarPhysics::Instrumentation and DetectorsSolar neutrinoscintillation counter: liquidelastic scatteringantineutrino/e: particle identification01 natural sciences7. Clean energyneutrino: fluxlaw.inventionHigh Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)law[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]neutrino: supernova26.65.+t010303 astronomy & astrophysicsBorexinoElastic scatteringPhysicsSolar flareSupernova Relic Neutrinosneutrino: energy spectrumS067EB8neutrinosInstrumentation and Detectors (physics.ins-det)neutrino: magnetic momentDiffuse Supernova Neutrino Background3. Good healthSupernovaHomestakeddc:540neutrino: flavorAntineutrinoBorexinoNeutrino97.60.BwHomestake experimentFlareantineutrino/e: fluxAntineutrinos13.15.+G; 26.65.+T; 29.40.Mc; 97.60.Bw; Antineutrinos; Diffuse supernova neutrino background; Neutrinos; Solar flares; Supernova relic neutrinosAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesSupernova relic neutrinosupernova relic neutrinosNONuclear physics13.15.+gPE2_2Antineutrinos; Neutrinos; Diffuse supernova neutrino background; Supernova relic neutrinos; Solar flares0103 physical sciencesNeutrino[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]Neutrinosdiffuse supernova neutrino background010308 nuclear & particles physicsHigh Energy Physics::PhenomenologyAstronomy and Astrophysicsneutrino: particle source29.40.McGran SassoSolar flareSolar Flares13. Climate actionspectralHigh Energy Physics::Experimentexperimental results
researchProduct

Borexino’s search for low-energy neutrino and antineutrino signals correlated with gamma-ray bursts

2017

International audience; A search for neutrino and antineutrino events correlated with 2350 gamma-ray bursts (GRBs) is performed with Borexino data collected between December 2007 and November 2015. No statistically significant excess over background is observed. We look for electron antineutrinos ( ν¯e ) that inverse beta decay on protons with energies from 1.8  MeV to 15  MeV and set the best limit on the neutrino fluence from GRBs below 8  MeV. The signals from neutrinos and antineutrinos from GRBs that scatter on electrons are also searched for, a detection channel made possible by the particularly radio-pure scintillator of Borexino. We obtain currently the best limits on the neutrino f…

antineutrinoselectronAntineutrinosneutrino: solarPhysics::Instrumentation and Detectorsdata acquisitionSolar neutrino[ PHYS.ASTR ] Physics [physics]/Astrophysics [astro-ph]Astrophysics::High Energy Astrophysical Phenomenalow energy/MeV neutrinosElectrongamma ray: burst01 natural sciencesNuclear physicsLow energy/MeV neutrino0103 physical sciencesNeutrinoLow energy/MeV neutrinosNeutrinosNuclear Experiment010303 astronomy & astrophysicsGamma-ray burstBorexinoscintillation counterPhysicsflavor010308 nuclear & particles physicsbackgroundgamma-ray burstsneutrinosAntineutrinos; Gamma-ray bursts; Low energy/MeV neutrinos; Neutrinos; Astronomy and AstrophysicsAstronomy and Astrophysicssemileptonic decayantineutrinocorrelation: timeNeutrino detectorInverse beta decayddc:540Scintillation counterreadoutHigh Energy Physics::ExperimentBorexinoGamma-ray burstsNeutrinoGamma-ray burst[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]
researchProduct

Latest results from CUPID-0

2022

International audience; CUPID-0 is a pilot experiment in scintillating cryogenic calorimetry for the search of neutrino-less double beta decay. 26 ZnSe crystals were operated continuously in the first project phase (March 2017 - December 2018), demonstrating unprecedented low levels of background in the region of interest at the Q-value of $^{82}\rm{Se}$. From this successful experience comes a demonstration of full alpha to beta/gamma background separation, the most stringent limits on the $^{82}\rm{Se}$ neutrino-less double beta decay, as well as the most precise measurement of the $^{82}$Se half-life. After a detector upgrade, CUPID-0 began its second and last phase (June 2019 - February…

backgroundSettore FIS/04scintillation counter cryogenicstutkimuslaitteetdouble-beta decay[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]hiukkasfysiikkaBayesiandecay modescrystalilmaisimetdetector upgrade[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]spectralground stateydinfysiikkacalorimeter cryogenicsCUPID-0 Double beta decay cryogenic calorimeters scintillation exotic decay modes
researchProduct

Photon yields and decay times of cross luminescence in ionic crystals

1992

The authors report on the scintillation properties of the ternary inorganic crystals KMgF/sub 3/, KYF/sub 4/:Rb, K/sub 2/YF/sub 5/, KLuF/sub 4/, RbMgF/sub 3/, KZnF/sub 3/, BaTm/sub 2/F/sub 8/, LiYF/sub 4/:Nd, and BaF/sub 2/:Rb. The scintillation light output of these crystals was estimated from the X-ray-induced emission spectra. Optical absorption spectra and decay time spectra were also measured and are presented. The first four crystals produced cross-luminescence (CL) with a decay time of about 1.5 ns. CL was not observed for the other crystals. >

chemistry.chemical_classificationNuclear and High Energy PhysicsScintillationMaterials scienceAnalytical chemistrychemistry.chemical_elementNeodymiumParticle detectorSpectral lineNuclear Energy and EngineeringchemistryScintillation counterEmission spectrumElectrical and Electronic EngineeringLuminescenceInorganic compound
researchProduct

Relaxation of electron-hole pairs and scintillation mechanism in alkali halide crystals

1997

Abstract The mechanism of the ionizing radiation energy transfer from host lattice to luminescence centers is discussed taking into account the results of the recent experimental investigations of electron-hole pair relaxation in alkali iodide crystals. The high scintillation yield in CsI-Tl, CsI-Na and partially in Nal-Tl crystals is explained by the process of the motion and capture of a one-center self-trapped exciton by impurity ions.

chemistry.chemical_classificationScintillationPhysics::Instrumentation and DetectorsChemistryCarrier generation and recombinationExcitonIodideBiophysicsHalideGeneral ChemistryCondensed Matter PhysicsAlkali metalBiochemistryAtomic and Molecular Physics and OpticsIonizing radiationAtomic physicsLuminescenceJournal of Luminescence
researchProduct

On the Correlations Between Constitution and Scintillation Properties in the p-Oligophenylene Series

1968

Abstract The paper deals with the problem: What properties are requested from an organic scintillator solute and what structural principles are given to realize, or at least to influence them especially by looking at the p-oligophenylene series? According to their importance and also in respect to more or less special purposes one can distinguish the following sequence: 1) An organic scintillator solute must have a sufficient solubility in all types of solvents used for this counting method. As a result of extensive systematic studies substitution of larger alkyl groups has been recognized as a very effective principle of solubilization. By use of branched, particularly long-chain branched …

chemistry.chemical_classificationScintillationchemistry.chemical_compoundSeries (mathematics)Ethylene oxidechemistrySolubilizationPolarOrganic chemistrySolubilityAlkylMolecular Crystals
researchProduct

Glucose Diffusion Coefficients Determined from Concentration Profiles in Emt6 Tumor Spheroids Incubated in Radioactively Labeled L-Glucose

1994

In order to theoretically assess tissue energetic status, conditions for substance exchange need to be known. One group of parameters important in this context are diffusion coefficients of nutrients and metabolic waste products which may be assessed by incubating spheroids in a medium containing tracer amounts of the radioactively labeled substance in question, for a defined period of time. In previous studies, the overall amount of 14C-labeled substance taken up by the spheroids was measured by scintillation counters (e.g.[1]), or the concentration of 3H-labeled substance in the spheroid center was determined by autoradiography and grain counting (e.g. [4]). From a number of such measurem…

chemistry.chemical_compoundChromatographyL-GlucoseChemistryTRACERDiffusionembryonic structuresScintillation counterTumor spheroidSpheroidContext (language use)Densitometry
researchProduct