Search results for "Sectioning"
showing 10 items of 43 documents
Introducing anatomical techniques to subfossil wood
2018
Abstract Successful cross-dating of subfossil wood, ideally in combination with precise information on germination and dieback, requires the accurate detection of tree-ring width (TRW) boundaries along continuous measurement tracks from pith to bark. However, wood decay and the mechanical deformation of cells often challenge the dendrochronological analysis and subsequent paleoclimatic and environmental interpretations. Here, we show that wood anatomical techniques can improve the assessment of heavily degraded and/or deformed material. We apply state-of-the-art sample preparation, thin sectioning and double-staining to a unique collection of Late Glacial pines that were growing ∼13,000 yea…
Long slide holders for microscope stages
2018
ABSTRACT The use of automated techniques for image analysis of microscopic wood specimens together with new procedures for the preparation of stained xylem tissue support the use of quantitative wood anatomy. These techniques and procedures are especially useful in the studies of retrospective analysis of xylem phenology, reaction(s) of trees to stressful conditions of growth, or reconstruction of long-term growth trends. The unresolved technical problems during the digitalization of cross sections from entire increment cores were stabilization and precise shifting of long microscopic specimens onto the optical microscope stage. For this reason, we have developed a long slide holder for mic…
Three-Dimensional Integral-Imaging Display From Calibrated and Depth-Hole Filtered Kinect Information
2016
We exploit the Kinect capacity of picking up a dense depth map, to display static three-dimensional (3D) images with full parallax. This is done by using the IR and RGB camera of the Kinect. From the depth map and RGB information, we are able to obtain an integral image after projecting the information through a virtual pinhole array. The integral image is displayed on our integral-imaging monitor, which provides the observer with horizontal and vertical perspectives of big 3D scenes. But, due to the Kinect depth-acquisition procedure, many depthless regions appear in the captured depth map. These holes spread to the generated integral image, reducing its quality. To solve this drawback we …
Two simple criteria to estimate an objective's performance when imaging in non design tissue clearing solutions
2019
Tissue clearing techniques are undergoing a renaissance motivated by the need to image fluorescent neurons, and other cells, deep in the sample without physical sectioning. Optical transparency is achieved by equilibrating tissues with high refractive index (RI) solutions. When the microscope objective is not perfectly matched to the RI of the cleared sample, aberrations are introduced. We present two simple-to-calculate numerical criteria predicting: (i) the degradation in image quality (brightness and resolution) from optimal conditions of any clearing solution/objective combination; (ii) which objective, among several available, achieves the highest resolution in a given medium. We deriv…
Flexible multi-beam light-sheet fluorescence microscope for live imaging without striping artifacts
2018
The development of light-sheet fluorescence microscopy (LSFM) has greatly expanded the experimental capabilities in many biological and biomedical research fields, enabling for example live studies of murine and zebrafish neural activity or of cell growth and division. The key feature of the method is the selective illumination of a sample single plane, providing an intrinsic optical sectioning and allowing direct 2D image recording. On the other hand, this excitation scheme is more affected by absorption or scattering artifacts in comparison to point scanning methods, leading to un-even illumination. We present here an easily implementable method, based on acousto-optical deflectors (AOD),…
Vision metrology and Structure from Motion for archaeological heritage 3D reconstruction: A Case Study of various Roman mosaics
2017
<p class="Abstract">Vision metrology and computer vision can be successfully used for archaeological heritage 3D reconstruction in very high precision 3D measurement projects. Of those archaeological objects requiring very accurate measurements (&lt;1 mm), ancient mosaics comprise some of the most important. The aim of this paper is to assess the photogrammetric/computer vision approach in a vision metrology context as part of a 3D mosaics survey. In order to evaluate the optimal photogrammetric/computer vision workflow in this work, three different surveys were performed on three mosaics of different sizes and locations. Two of these are stored at the <em>Antonino Salinas&l…
Approximated overlap error for the evaluation of feature descriptors on 3D scenes
2013
This paper presents a new framework to evaluate feature descriptors on 3D datasets. The proposed method employs the approximated overlap error in order to conform with the reference planar evaluation case of the Oxford dataset based on the overlap error. The method takes into account not only the keypoint centre but also the feature shape and it does not require complex data setups, depth maps or an accurate camera calibration. Only a ground-truth fundamental matrix should be computed, so that the dataset can be freely extended by adding further images. The proposed approach is robust to false positives occurring in the evaluation process, which do not introduce any relevant changes in the …
Design and calibration of an omni-RGB+D camera
2016
International audience; In this paper, we present the design of a new camera combining both predator-like and prey-like vision features. This setup provides both a spherical RGB-view and a directional depth-view of the environment. The model and calibration of the full setup are described. A few examples will be given to demonstrate the interest and the versatility of such camera for robotics and video surveillance at the oral presentation.
Investigating the performance of reconstruction methods used in structured illumination microscopy as a function of the illumination pattern's modula…
2016
Surpassing the resolution of optical microscopy defined by the Abbe diffraction limit, while simultaneously achieving optical sectioning, is a challenging problem particularly for live cell imaging of thick samples. Among a few developing techniques, structured illumination microscopy (SIM) addresses this challenge by imposing higher frequency information into the observable frequency band confined by the optical transfer function (OTF) of a conventional microscope either doubling the spatial resolution or filling the missing cone based on the spatial frequency of the pattern when the patterned illumination is two-dimensional. Standard reconstruction methods for SIM decompose the low and hi…
Measuring Inaccessible Residual Stresses Using Multiple Methods and Superposition
2010
The traditional contour method maps a single component of residual stress by cutting a body carefully in two and measuring the contour of the cut surface. The cut also exposes previously inaccessible regions of the body to residual stress measurement using a variety of other techniques, but the stresses have been changed by the relaxation after cutting. In this paper, it is shown that superposition of stresses measured post-cutting with results from the contour method analysis can determine the original (pre-cut) residual stresses. The general superposition theory using Bueckner’s principle is developed and limitations are discussed. The procedure is experimentally demonstrated by determini…