Search results for "Sequence Analysis"
showing 10 items of 1349 documents
Identification of metastasis-related genes by genomic and transcriptomic studies in murine melanoma.
2021
Abstract Aims We systematically characterized metastatic murine B16-F10 melanoma, a sub-line derived from murine melanoma B16-F1 cells. Materials and methods RNA-sequencing and network analyses (Ingenuity Pathway Analysis) were performed to identify novel potential metastasis mechanisms. Chromosomal aberrations were identified by multicolor fluorescence in situ hybridization (mFISH) using all 21 murine whole chromosome painting probes. Key findings Numerous genes were overexpressed in B16-F10 cells, some of which have been already described as being metastasis-linked. Nr5a1/sf1, a known prognostic marker for adrenal tumors, was 177-fold upregulated in B16-F10 cells compared to B16-F1 cells.…
Clinical whole-exome sequencing for the diagnosis of rare disorders with congenital anomalies and/or intellectual disability: substantial interest of…
2017
International audience; PurposeCongenital anomalies and intellectual disability (CA/ID) are a major diagnostic challenge in medical genetics—50% of patients still have no molecular diagnosis after a long and stressful diagnostic “odyssey.” Solo clinical whole-exome sequencing (WES) was applied in our genetics center to improve diagnosis in patients with CA/ID.MethodsThis retrospective study examined 416 consecutive tests performed over 3 years to demonstrate the effectiveness of periodically reanalyzing WES data. The raw data from each nonpositive test was reanalyzed at 12 months with the most recent pipeline and in the light of new data in the literature. The results of the reanalysis for …
Identification and Characterization of Extracellular Vesicles and Its DNA Cargo Secreted During Murine Embryo Development
2020
Extracellular vesicles (EVs) are known to transport DNA, but their implications in embryonic implantation are unknown. The aim of this study was to investigate EVs production and secretion by preimplantation embryos and assess their DNA cargo. Murine oocytes and embryos were obtained from six- to eight-week-old females, cultured until E4.5 and analyzed using transmission electron microscopy to examine EVs production. EVs were isolated from E4.5-day conditioned media and quantified by nanoparticle tracking analysis, characterized by immunogold, and their DNA cargo sequenced. Multivesicular bodies were observed in murine oocytes and preimplantation embryos together with the secretion of EVs t…
HCV NS3 sequencing as a reliable and clinically useful tool for the assessment of genotype and resistance mutations for clinical samples with differe…
2016
OBJECTIVES: This study aims to evaluate the reliability and clinical utility of NS3 sequencing in hepatitis C virus (HCV) 1-infected patients who were candidates to start a PI-containing regimen. METHODS: NS3 protease sequencing was performed by in-house-developed HCV-1 subtype-specific protocols. Phylogenetic analysis was used to test sequencing reliability and concordance with previous genotype/subtype assignment by commercial genotyping assays. RESULTS: Five hundred and sixty-seven HCV plasma samples with quantifiable HCV-RNA from 326 HCV-infected patients were collected between 2011 and 2014. Overall, the success rate of NS3 sequencing was 88.9%. The success rate between the two subtype…
CHK1-targeted therapy to deplete DNA replication-stressed, p53-deficient, hyperdiploid colorectal cancer stem cells.
2017
ObjectiveCancer stem cells (CSCs) are responsible for tumour formation and spreading, and their targeting is required for tumour eradication. There are limited therapeutic options for advanced colorectal cancer (CRC), particularly for tumours carrying RAS-activating mutations. The aim of this study was to identify novel CSC-targeting strategies.DesignTo discover potential therapeutics to be clinically investigated as single agent, we performed a screening with a panel of FDA-approved or investigational drugs on primary CRC cells enriched for CSCs (CRC-SCs) isolated from 27 patients. Candidate predictive biomarkers of efficacy were identified by integrating genomic, reverse-phase protein mic…
2020
AbstractDeveloping methods for accurate detection of RNA modifications remains a major challenge in epitranscriptomics. Next-generation sequencing-based mapping approaches have recently emerged but, often, they are not quantitative and lack specificity. Pseudouridine (ψ), produced by uridine isomerization, is one of the most abundant RNA modification. ψ mapping classically involves derivatization with soluble carbodiimide (CMCT), which is prone to variation making this approach only semi-quantitative. Here, we developed ‘HydraPsiSeq’, a novel quantitative ψ mapping technique relying on specific protection from hydrazine/aniline cleavage. HydraPsiSeq is quantitative because the obtained sign…
MAGA: A Supervised Method to Detect Motifs From Annotated Groups in Alignments
2020
Multiple sequence alignments are usually phylogenetically driven. They are studied in the framework of evolution. But sometimes, it is interesting to study residue conservation at positions unconstrained by evolutionary rules. We present a supervised method to access a layer of information difficult to appreciate visually when many protein sequences are aligned. This new tool (MAGA; http://cbdm-01.zdv.uni-mainz.de/~munoz/maga/ ) locates positions in multiple sequence alignments differentially conserved in manually defined groups of sequences.
Molecular characterization of Treponema pallidum subsp. pallidum in Switzerland and France with a new multilocus sequence typing scheme
2018
Syphilis is an important public health problem and an increasing incidence has been noted in recent years. Characterization of strain diversity through molecular data plays a critical role in the epidemiological understanding of this re-emergence. We here propose a new high-resolution multilocus sequence typing (MLST) scheme for Treponema pallidum subsp. pallidum (TPA). We analyzed 30 complete and draft TPA genomes obtained directly from clinical samples or from rabbit propagated strains to identify suitable typing loci and tested the new scheme on 120 clinical samples collected in Switzerland and France. Our analyses yielded three loci with high discriminatory power: TP0136, TP0548, and TP…
Genomic organization and promoter characterization of the gene encoding a putative endoplasmic reticulum chaperone, ERp29
2002
Abstract ERp29 is a soluble protein localized in the endoplasmic reticulum (ER) of eukaryotic cells, which is conserved in all mammalian species. The N-terminal domain of ERp29 displays sequence and structural similarity to the protein disulfide isomerase despite the lack of the characteristic double cysteine motif. Although the exact function of ERp29 is not yet known, it was hypothesized that it may facilitate folding and/or export of secretory proteins in/from the ER. ERp29 is induced by ER stress, i.e. accumulation of unfolded proteins in the ER. To gain an insight into the mechanisms regulating ERp29 expression we have cloned and characterized the rat ERp29 gene and studied in details …
A hybrid short read mapping accelerator
2013
Background The rapid growth of short read datasets poses a new challenge to the short read mapping problem in terms of sensitivity and execution speed. Existing methods often use a restrictive error model for computing the alignments to improve speed, whereas more flexible error models are generally too slow for large-scale applications. A number of short read mapping software tools have been proposed. However, designs based on hardware are relatively rare. Field programmable gate arrays (FPGAs) have been successfully used in a number of specific application areas, such as the DSP and communications domains due to their outstanding parallel data processing capabilities, making them a compet…