Search results for "Sesquilinear form"

showing 10 items of 22 documents

A survey on solvable sesquilinear forms

2018

The aim of this paper is to present a unified theory of many Kato type representation theorems in terms of solvable forms on a Hilbert space \((H,\langle\cdot,\cdot\rangle)\) In particular, for some sesquilinear forms Ω on a dense domain \(D\subseteq\mathcal {H}\) one looks for a representation \(\Omega(\xi,\eta)= \langle T\xi,\eta\rangle\) \((\xi\epsilon\mathcal{D}\mathcal(T),\eta\epsilon D)\) where T is a densely defined closed operator with domain \(D(\mathcal{T})\subseteq \mathcal{D}\). There are two characteristic aspects of a solvable form on H. One is that the domain of the form can be turned into a reexive Banach space that need not be a Hilbert space. The second one is that represe…

Operator (physics)Banach spaceHilbert spaceKato’s representation theoremType (model theory)Combinatoricssymbols.namesakeSettore MAT/05 - Analisi MatematicaProduct (mathematics)Bounded functionDomain (ring theory)symbolsQ-closed and solvable sesquilinear formsUnified field theoryMathematics
researchProduct

Representation Theorems for Solvable Sesquilinear Forms

2017

New results are added to the paper [4] about q-closed and solvable sesquilinear forms. The structure of the Banach space $\mathcal{D}[||\cdot||_\Omega]$ defined on the domain $\mathcal{D}$ of a q-closed sesquilinear form $\Omega$ is unique up to isomorphism, and the adjoint of a sesquilinear form has the same property of q-closure or of solvability. The operator associated to a solvable sesquilinear form is the greatest which represents the form and it is self-adjoint if, and only if, the form is symmetric. We give more criteria of solvability for q-closed sesquilinear forms. Some of these criteria are related to the numerical range, and we analyse in particular the forms which are solvable…

Pure mathematics47A07 47A30Banach spaceStructure (category theory)01 natural sciencesBanach-Gelfand tripletCompatible normOperator (computer programming)Kato's first representation theoremFOS: Mathematics0101 mathematicsRepresentation (mathematics)Numerical rangeMathematics::Representation TheoryMathematicsMathematics::Functional AnalysisAlgebra and Number TheorySesquilinear formMathematics::Operator Algebras010102 general mathematicsFunctional Analysis (math.FA)Mathematics - Functional Analysis010101 applied mathematicsq-closed and solvable sesquilinear formDomain (ring theory)IsomorphismAnalysis
researchProduct

A Kato's second type representation theorem for solvable sesquilinear forms

2017

Kato's second representation theorem is generalized to solvable sesquilinear forms. These forms need not be non-negative nor symmetric. The representation considered holds for a subclass of solvable forms (called hyper-solvable), precisely for those whose domain is exactly the domain of the square root of the modulus of the associated operator. This condition always holds for closed semibounded forms, and it is also considered by several authors for symmetric sign-indefinite forms. As a consequence, a one-to-one correspondence between hyper-solvable forms and operators, which generalizes those already known, is established.

Pure mathematicsKato's representation theoremRepresentation theorem47A07 47A10Radon–Nikodym-like representationsApplied Mathematics010102 general mathematicsq-closed/solvable sesquilinear formRepresentation (systemics)Type (model theory)01 natural sciencesFunctional Analysis (math.FA)Mathematics - Functional Analysis010101 applied mathematicsOperator (computer programming)Square rootSettore MAT/05 - Analisi MatematicaDomain (ring theory)FOS: Mathematics0101 mathematicsAnalysisMathematicsJournal of Mathematical Analysis and Applications
researchProduct

Some representation theorems for sesquilinear forms

2016

The possibility of getting a Radon-Nikodym type theorem and a Lebesgue-like decomposition for a non necessarily positive sesquilinear $\Omega$ form defined on a vector space $\mathcal D$, with respect to a given positive form $\Theta$ defined on $\D$, is explored. The main result consists in showing that a sesquilinear form $\Omega$ is $\Theta$-regular, in the sense that it has a Radon-Nikodym type representation, if and only if it satisfies a sort Cauchy-Schwarz inequality whose right hand side is implemented by a positive sesquilinear form which is $\Theta$-absolutely continuous. In the particular case where $\Theta$ is an inner product in $\mathcal D$, this class of sesquilinear form cov…

Pure mathematicsSesquilinear formType (model theory)01 natural sciencessymbols.namesakeOperator (computer programming)FOS: Mathematics0101 mathematicsMathematicsMathematics::Functional AnalysisSesquilinear formMathematics::Operator AlgebrasApplied Mathematics010102 general mathematicsHilbert spaceHilbert spaceAnalysiPositive formFunctional Analysis (math.FA)010101 applied mathematicsMathematics - Functional AnalysisProduct (mathematics)symbolsOperatorAnalysisSubspace topologyVector space
researchProduct

On the representation of integers by indefinite binary Hermitian forms

2011

Given an integral indefinite binary Hermitian form f over an imaginary quadratic number field, we give a precise asymptotic equivalent to the number of nonequivalent representations, satisfying some congruence properties, of the rational integers with absolute value at most s by f, as s tends to infinity.

Pure mathematicsrepresentation of integersGeneral MathematicsHyperbolic geometryAMS : 11E39 11N45 20H10 30F4001 natural sciences[MATH.MATH-GR]Mathematics [math]/Group Theory [math.GR]symbols.namesake0103 physical sciencesEisenstein seriesCongruence (manifolds)group of automorphs0101 mathematicsQuaternionMathematicsBinary Hermitian formQuaternion algebraMathematics - Number TheorySesquilinear formta111010102 general mathematicsOrder (ring theory)Hermitian matrix[MATH.MATH-NT]Mathematics [math]/Number Theory [math.NT]Bianchi group[MATH.MATH-DG]Mathematics [math]/Differential Geometry [math.DG]symbolsMathematics::Differential Geometry010307 mathematical physics
researchProduct

Sesquilinear forms associated to sequences on Hilbert spaces

2019

The possibility of defining sesquilinear forms starting from one or two sequences of elements of a Hilbert space is investigated. One can associate operators to these forms and in particular look for conditions to apply representation theorems of sesquilinear forms, such as Kato's theorems. The associated operators correspond to classical frame operators or weakly-defined multipliers in the bounded context. In general some properties of them, such as the invertibility and the resolvent set, are related to properties of the sesquilinear forms. As an upshot of this approach new features of sequences (or pairs of sequences) which are semi-frames (or reproducing pairs) are obtained.

Semi-framePure mathematicsGeneral MathematicsContext (language use)42C15 47A07 47A05 46C0501 natural sciencesBessel sequencesymbols.namesakeSettore MAT/05 - Analisi MatematicaRepresentation theoremFOS: MathematicsFrame (artificial intelligence)Frame0101 mathematics0105 earth and related environmental sciencesMathematicsResolvent set010505 oceanography010102 general mathematicsAssociated operatorRepresentation (systemics)Hilbert spaceFunctional Analysis (math.FA)Mathematics - Functional AnalysisBounded functionsymbolsSesquilinear forms
researchProduct

An equivalent formulation of 0-closed sesquilinear forms

2022

AbstractIn 1970, McIntosh introduced the so-called 0-closed sesquilinear forms and proved a corresponding representation theorem. In this paper, we give a simple equivalent formulation of 0-closed sesquilinear forms. The main underlying idea is to consider minimal pairs of non-negative dominating forms.

Settore MAT/05 - Analisi MatematicaRepresentation theoremGeneral Mathematics0-closed formsSesquilinear formsMinimal formsArchiv der Mathematik
researchProduct

A Lebesgue-type decomposition on one side for sesquilinear forms

2021

Sesquilinear forms which are not necessarily positive may have a dierent behavior, with respect to a positive form, on each side. For this reason a Lebesgue-type decomposition on one side is provided for generic forms satisfying a boundedness condition.

Settore MAT/05 - Analisi Matematicasesquilinear forms Lebesgue decomposition regularity singularity complex measures bounded operators
researchProduct

Maximal Operators with Respect to the Numerical Range

2018

Let $\mathfrak{n}$ be a nonempty, proper, convex subset of $\mathbb{C}$. The $\mathfrak{n}$-maximal operators are defined as the operators having numerical ranges in $\mathfrak{n}$ and are maximal with this property. Typical examples of these are the maximal symmetric (or accretive or dissipative) operators, the associated to some sesquilinear forms (for instance, to closed sectorial forms), and the generators of some strongly continuous semi-groups of bounded operators. In this paper the $\mathfrak{n}$-maximal operators are studied and some characterizations of these in terms of the resolvent set are given.

Strongly continuous semi-groupsPure mathematicsCayley transformSesquilinear form01 natural sciencesSettore MAT/05 - Analisi MatematicaMaximal operator0103 physical sciencesFOS: Mathematics0101 mathematicsMathematics::Representation TheoryNumerical rangeMathematics47A20 47A12 47B44 47A07Resolvent setApplied Mathematics010102 general mathematicsRegular polygonOperator theoryFunctional Analysis (math.FA)Mathematics - Functional AnalysisComputational MathematicsComputational Theory and MathematicsBounded functionDissipative systemSectorStrip010307 mathematical physicsNumerical rangeComplex Analysis and Operator Theory
researchProduct

Generalized frame operator, lower semiframes, and sequences of translates

2023

Given an arbitrary sequence of elements $\xi =\lbrace \xi _n\rbrace _{n\in \mathbb {N}}$ of a Hilbert space $(\mathcal {H},\langle \cdot ,\cdot \rangle )$, the operator $T_\xi$ is defined as the operator associated to the sesquilinear form $\Omega _\xi (f,g)=\sum _{n\in \mathbb {N}} \langle f , \xi _n\rangle \langle \xi _n , g\rangle$, for $f,g\in \lbrace h\in \mathcal {H}: \sum _{n\in \mathbb {N}}|\langle h , \xi _n\rangle |<^>2<\infty \rbrace$. This operator is in general different from the classical frame operator but possesses some remarkable properties. For instance, $T_\xi$ is always self-adjoint with regard to a particular space, unconditionally defined, and, when xi is a lo…

lower semiframesassociated operatorssequences of translatessesquilinear formsSettore MAT/05 - Analisi MatematicaGeneral MathematicsdualityMathematische Nachrichten
researchProduct