Search results for "Sieve"

showing 10 items of 76 documents

Modelling electrocatalysis of hydroquinone oxidation by nicotinamide adenine dinucleaotide coenzyme encapsulated within SBA-15 and MCM-41 mesoporous …

2006

The electrochemical response of NADH associated to two mesoporous aluminosilicates, MCM-41 and SBA-15, is described upon attachment of such materials into polymer-film electrodes. The studied materials display a significant electrocatalytic activity towards the oxidation of 1,4-dihydrobenzoquinone, H2Q. Two models for describing the electrocatalytic process, based on the general theory of mediated electrocatalysis and the Lovric and Scholz formulation of the voltammetry of microparticles are discussed. Voltammetric and chronoamperometric data indicate that the electrocatalytic process involves the formation of a surface-confined NADH–H2Q adduct in the case of SBA-15, while a surface reactio…

HydroquinoneGeneral Chemical EngineeringElectrochemistryElectrocatalystMolecular sievechemistry.chemical_compoundMCM-41Chemical engineeringchemistryElectrochemistryOrganic chemistryCyclic voltammetryMesoporous materialVoltammetryElectrochimica Acta
researchProduct

Selective mono-de-O-acetylation of the per-O-acetylated brasilicardin carbohydrate side chain

2021

Abstract Methanol dried over powdered 4 A molecular sieves can be used for a selective mono-de-O-acetylation of the phenolic acetyl group of the per-O-acetyl protected brasilicardin A carbohydrate side chain. This reaction opens a practical procedure for a synthetic access to derivates of the immunosuppressive and cytotoxic natural product brasilicardin A.

Natural product010405 organic chemistryChemistryOrganic ChemistryCarbohydratesAcetylationGeneral MedicineCarbohydrate010402 general chemistryMolecular sieve01 natural sciencesBiochemistry0104 chemical sciencesAnalytical Chemistrychemistry.chemical_compoundAcetylationSide chainOrganic chemistryMethanolProtein Processing Post-TranslationalCarbohydrate Research
researchProduct

The role of pore topology on the behaviour of FCC zeolite additives

1999

Abstract A large variety of zeolite topologies including: large pore tridirectional (Beta), large pore unidirectional (Mordenite, SSZ-24), bidirectional 10 member ring pores (MRP) (ZSM-5), bidirectional 10 × 8 MRP (Ferrierite), tridirectional with connected 12 and 10 MRP (CIT-1), bidirectional with 12 MRP connected by 10 MRP (NU-87), tridirectional with 10 × 11 × 12 MRP (NU-86), and finally 10 MRP, and independent 12 MR cavities connected by 10 MR windows (MCM-22), have been studied as catalysts for the cracking of a gasoline range model molecule ( n -heptane). Kinetic and decay constants as well as selectivity parameters such as paraffin/olefin, i -C 4 / n -C 4 , i -C 5 / n -C 5 , C 3 /C 4…

HeptaneOlefin fiberChemistryProcess Chemistry and TechnologyMineralogyFluid catalytic crackingMolecular sieveCatalysisMordeniteCrystallographychemistry.chemical_compoundFerrieriteZeoliteSelectivityApplied Catalysis A: General
researchProduct

Isomerization of α-pinene oxide over ZSM-5 based micro-mesoporous materials

2018

Abstract Few types of ZSM-5 based micro-mesoporous materials obtained via a dual template method, steam-assisted conversion and dual-functional templating were evaluated in α-pinene oxide isomerization. Complete conversion and the highest selectivity towards trans-carveol (ca. 40–43%) were achieved over X-ray amorphous micro-mesoporous aluminosilicates as well as mesoporous molecular sieves AlSi-SBA-15. In addition, X-ray amorphous samples containing the secondary building units of ZSM-5 zeolite demonstrated the highest rate of α-pinene oxide isomerization. The yield of the most desired product trans-carveol to a large extent depends on the accessibility of acid sites to the reagents molecu…

ChemistryProcess Chemistry and TechnologyInorganic chemistryOxide02 engineering and technology010402 general chemistry021001 nanoscience & nanotechnologyMolecular sieve01 natural sciencesCatalysis0104 chemical sciencesCatalysis[CHIM.THEO]Chemical Sciences/Theoretical and/or physical chemistrychemistry.chemical_compoundLewis acids and basesZSM-50210 nano-technologyMesoporous materialZeoliteIsomerizationComputingMilieux_MISCELLANEOUSApplied Catalysis A: General
researchProduct

Confinement in micropores and enthalpies of physisorption

1994

Abstract The use of quasi-equilibrium volumetry associated with isothermal microcalorimetry at 77 K allows direct measurement of the interactions on adsorption of simple probe molecules within well crystallised aluminophosphate and zeolite molecular sieves. Four particular cases are presented which show: the effect of varying micropore diameter, the effect of adsorbing molecules with a favourable geometric compatibility with a given micropore system, the effect of varying the field potential within a given micropore system and finally, the effect of variable selective blocking of the micropore system.

Isothermal microcalorimetryAdsorptionPhysisorptionChemistryMoleculeThermodynamicsNanotechnologyMicroporous materialZeoliteMolecular sieve
researchProduct

A microcalorimetric study of the different states of argon and nitrogen adsorbed AT 77 K on silicalite-I and ZSM-5

1992

The adsorption of argon and nitrogen on a series of MFI-type zeolites (silicalite-I (Si/Al>1000) and HZSM-5 (16<Si/Al<120)) was studied by isothermal microcalorimetry, volumetry and neutron diffraction.

Isothermal microcalorimetryAdsorptionArgonchemistryNeutron diffractionInorganic chemistryAnalytical chemistrychemistry.chemical_elementZSM-5ZeoliteMolecular sieveNitrogenJournal of Thermal Analysis
researchProduct

The Medicago truncatula sucrose transporter family: characterization and implication of key members in carbon partitioning towards arbuscular mycorrh…

2012

We identified de novo sucrose transporter (SUT) genes involved in long-distance transport of sucrose from photosynthetic source leaves towards sink organs in the model leguminous species Medicago truncatula. The iden- tification and functional analysis of sugar transporters provide key information on mechanisms that underlie carbon partitioning in plant-microorganism interactions. In that way, full-length sequences of the M. truncatula SUT (MtSUT) family were retrieved and biochemical characterization of MtSUT members was performed by heterologous expression in yeast. The MtSUT family now comprises six genes which distribute among Dicotyledonous clades. MtSUT1-1 and MtSUT4-1 are key members…

0106 biological sciencesSucrose[SDV]Life Sciences [q-bio]Plant Science01 natural sciencesSIEVE ELEMENTSchemistry.chemical_compoundGene Expression Regulation Plantsucrose transporterMycorrhizaePHLOEMROOTSPlant Proteins2. Zero hungerRegulation of gene expression0303 health sciencesPHOSPHATE TRANSPORTERbiologyfood and beveragesARABIDOPSISSUTMedicago truncatulasugar partitioning[SDE]Environmental Sciencessugar transportGlomus intraradicesEXPRESSIONTOMATO SUGAR TRANSPORTERMolecular Sequence DataGENE FAMILYPhosphates03 medical and health sciencesSymbiosisBotanyMedicago truncatula[SDV.BV]Life Sciences [q-bio]/Vegetal BiologyPLANTSSugarGlomeromycotaSymbiosisGeneMolecular Biology030304 developmental biologyfungiMembrane Transport Proteins15. Life on landbiology.organism_classificationMONOSACCHARIDE TRANSPORTERYeastCarbonchemistryHeterologous expression010606 plant biology & botanyMolecular plant
researchProduct

Pore structural characteristics, size exclusion properties and column performance of two mesoporous amorphous silicas and their pseudomorphically tra…

2007

Highly ordered mesoporous silicas such as, mobile composition of matter, MCM-41, MCM-48, and the SBA-types of materials have helped to a large extent to understand the formation mechanisms of the pore structure of adsorbents and to improve the methods of pore structural characterization. It still remains an open question whether the high order, the regularity of the pore system, and the narrow pore size distribution of the materials will lead to a substantial benefit when these materials are employed in liquid phase separation processes. MCM-41 type 10 microm beads are synthesized following the route of pseudomorphic transformation of highly porous amorphous silicas. Highly porous silicas a…

Materials scienceSilica gelSize-exclusion chromatographyAnalytical chemistryFiltration and SeparationPercolation threshold[CHIM.MATE]Chemical Sciences/Material chemistry010501 environmental sciences010402 general chemistryMolecular sieve01 natural sciences0104 chemical sciencesAnalytical ChemistryAmorphous solidchemistry.chemical_compoundchemistryMCM-41Mesoporous materialPorosity0105 earth and related environmental sciencesJournal of Separation Science
researchProduct

Monte Carlo calculation of dose rate distributions around 0.5 and 0.6 mm in diameter 192Ir wires

1999

Monte Carlo simulations of absolute dose rate in liquid water are presented in the form of away-along tables for 1 and 5 cm 192 Ir wires of 0.5 and 0.6 mm diameter. Simulated absolute dose rate values can be used as benchmark data to verify the calculation results of treatment planning systems or directly as input data for treatment planning. Best fit value of an attenuation coefficient suitable for use in Sievert integral-type calculations has been derived based on Monte Carlo simulation results. For the treatment planning systems that are based on the TG43 formalism we have also computed the required dosimetry parameters.

Materials scienceLiquid watermedicine.medical_treatmentMonte Carlo methodBrachytherapyGeneral MedicineSievertComputational physicsAttenuation coefficientmedicineDosimetryStatistical physicsBenchmark dataDose rateMedical Physics
researchProduct

Iterative sparse matrix-vector multiplication for accelerating the block Wiedemann algorithm over GF(2) on multi-graphics processing unit systems

2012

SUMMARY The block Wiedemann (BW) algorithm is frequently used to solve sparse linear systems over GF(2). Iterative sparse matrix–vector multiplication is the most time-consuming operation. The necessity to accelerate this step is motivated by the application of BW to very large matrices used in the linear algebra step of the number field sieve (NFS) for integer factorization. In this paper, we derive an efficient CUDA implementation of this operation by using a newly designed hybrid sparse matrix format. This leads to speedups between 4 and 8 on a single graphics processing unit (GPU) for a number of tested NFS matrices compared with an optimized multicore implementation. We further present…

Block Wiedemann algorithmComputer Networks and CommunicationsComputer scienceGraphics processing unitSparse matrix-vector multiplicationGPU clusterParallel computingGF(2)Computer Science ApplicationsTheoretical Computer ScienceGeneral number field sieveMatrix (mathematics)Computational Theory and MathematicsFactorizationLinear algebraMultiplicationComputer Science::Operating SystemsSoftwareInteger factorizationSparse matrixConcurrency and Computation: Practice and Experience
researchProduct